
Akanksha Agrawal
Indian Institute of Technology Madras

RTA 2023, NISER Bhubaneshwar

 Computing Square Colorings Of Graphs

Joint work with Dániel Marx, Daniel Neuen and Jasper Slusallek

Roadmap

Background & Overview

Algorithm for Coloring based on dynamic programming over
tree decompositions.

Our algorithm for bounded treewidth graphs

 Our algorithm on planar graphs

Conclusion & Open problems

Graph Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

u
v u v

Endpoints of the edges
are in different parts

and integer q

Square of a graph

Graph G

u
v1

Square of : G G2

v2

v3

u
v1

v2

v3

V(G2) = V(G)
E(G2) = {{u, v} ∣ 1 ≤ 𝖽𝗂𝗌𝗍G(u, v) ≤ 2}

 = the number of edges in the shortest path between and in 𝖽𝗂𝗌𝗍G(u, v) u v G

Square Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

u
v u v

Endpoints of the edges in are in
different parts

G2

w

and integer q

Endpoints of the edges in are in
different parts

G2

Square Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

and integer q

u
v u v

w

Why is it different from
Graph Coloring?

Endpoints of the edges in are in
different parts

G2

Square Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

and integer q

u
v u v

w

Why is it different from
Graph Coloring? Structural properties of the input

graph may be lost

Endpoints of the edges in are in
different parts

G2

Square Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

and integer q

u
v u v

w

WHY DO WE CARE?

Endpoints of the edges in are in
different parts

G2

Square Coloring

C1 C2 C3 CqGraph G]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

]

<latexit sha1_base64="fRe/eWKURIG4wVyKA7aZf2xak5U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKRI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WzKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDWvXyvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP28aPUw==</latexit>

= V(G)

and integer q

u
v u v

w

WHY DO WE CARE?

Exploit the properties of the input
graph to obtain fast algorithms

Parameterized Problems

XAMPLES
Most classical one—the input size

Radix Sort: Maximum number of bits

How tree-like is the input graph

Classical problem coupled with an integer, called the parameter, with
each of the instance.

These integers measure a certain
property of the input or output, or both

Parameterized Problems

Fixed Parameter Tractable (FPT) Algorithms:

An algorithm for a parameterized problem running in time
, where is the parameter and is the input size.f(k) ⋅ 𝗉𝗈𝗅𝗒(n) k n

B

Graph G

a, b, w

a, b, c

b, c, p, q

a, c, s

A

C
D

ab

c
s

p

q

w

Each vertex is contained in at least one bag.
Both endpoints of an edge are contained in some bag.
The set of bags containing a vertex forms a connected
subtree.

Tree Decomposition & Treewidth

Tree Decomposition (T, β : V(T) → 2V(G))

B

Graph G

a, b, w

a, b, c

b, c, p, q

a, c, s

A

C
D

ab

c
s

p

q

w

Each vertex is contained in at least one bag.
Both endpoints of an edge are contained in some bag.
The set of bags containing a vertex forms a connected
subtree.

Tree Decomposition (T, β : V(T) → 2V(G))

Tree Decomposition & Treewidth

Width of : Maximum bag size - 1
Treewidth, : best such width

(T, β)
𝗍𝗐(G)

Tree Decomposition & Treewidth

Easy to check:

If is a star, its treewidth is and the treewidth of is G 1 G2 n − 1

NP-completeness: For each fixed For each fixed

Some polynomial time
cases:

For each For each

Coloring Square Coloring

q ≥ 3 q ≥ 4

Note a graph with max. degree , for we need at least
 colors. Thus, for , must be of paths and cycles

G Δ G2

Δ + 1 q ≤ 3 G

q ≤ 2 q ≤ 3

u
v

w

A Few Of The Prior Results

NP-completeness: For each fixed For each fixed

Some polynomial time
cases:

For each For each

Interval graphs Interval graphs

Chordal graphs Trees

Coloring Square Coloring

q ≥ 3 q ≥ 4

q ≤ 2 q ≤ 3

A Few Of The Prior Results

FPT Results:

Coloring Square Coloring

qO(𝗍𝗐) ⋅ n

2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

For can be assumed to be
at most

q
𝗍𝗐 + 1

A Few Of The Prior Results

FPT Results:

Coloring Square Coloring

2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

A Few Of The Prior Results

A Few Of The Prior Results

FPT Results:

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

A Few Of The Prior Results

FPT Results:

No FPT algorithm
param. by treewidth

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

Typically, for a parameterized problem either:

no FPT algorithm, but there is -time algorithm
or, it has an FPT algorithm

nO(𝗍𝗐)

Square Coloring admits an algorithm running in time .(q + 1)2𝗍𝗐+4 ⋅ nO(1)

Our Results For General Graphs

The above algorithm is essentially the best under ETH:

Square Coloring has no -time algorithm.f(𝗍𝗐) ⋅ n(2−ϵ)𝗍𝗐

Our Results On Planar Graphs

Planar Square Coloring is NP-hard for each fixed .q ≥ 4

NOTE: Four Color Theorem => for each ,
Planar Coloring is in polynomial time

q ≥ 4

Our Results On Planar Graphs

FPT Results:

Planar

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

2O(n log n)

Planar Square Coloring is NP-hard for each fixed .q ≥ 4

2O(n)

Our Results On Planar Graphs

FPT Results:

Planar

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

2O(n log n)

Planar Square Coloring is NP-hard for each fixed .q ≥ 4

Planar Square Coloring has -time algorithm.2O(n2/3 log n)

2O(n)

Algorithm for Coloring param. by treewidth:
dynamic programming over tree decomposition

Graph G

ab

c
s

p

q

w

Each vertex is contained in at least one bag.
Both endpoints of an edge are contained in some bag.
The set of bags containing a vertex forms a connected
subtree.

Tree Decomposition (T, β : V(T) → 2V(G))

Width of : Maximum bag size - 1
Treewidth, : best such width

(T, β)
𝗍𝗐(G)

Recalling Tree Decomposition

Root

a, b, w

a, b, c

b, c, p, q
a, c, s

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Root

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Graph induced on
vertices on and below :

G
t

Gt
t

Root

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Root

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Root

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Root

We go in a bottom up-fashion, starting from the leaves.

Tree Decomposition for graph (T, β : V(T) → 2V(G)) G

Algorithm for Coloring

Root

Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph induced on
vertices on and below :

G
t

Gt

t

Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph induced on
vertices on and below :

G
t

Gt

t

NOTE: many such choices!qO(𝗍𝗐)

For each , check if can be extended to a proper
coloring for .

χ : β(t) → {1,2,⋯, q} χ
Gt

Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph induced on
vertices on and below :

G
t

Gt

t

t1 t2

Way to ensure that:
 has at most 2 children

 varies in at most one vertex from and
t
β(t) β(t1) β(t2)

Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph induced on
vertices on and below :

G
t

Gt

t

t1 t2

For each , check if can be extended to a proper
coloring for .

χ : β(t) → {1,2,⋯, q} χ
Gt

Can be easily done!

RUNTIME: qO(𝗍𝗐) ⋅ n

Why the previous DP fails for Square Coloring?

Failure for Square Coloring

t v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Failure for Square Coloring

t

Not enough to only
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2

First Attempt At Fixing the Issue

t

Not enough to only
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2

Also remember the color subset in the neighborhood of vertices in β(t)

Failure Again!

t

Not enough to only
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2

Also remember the color subset in the neighborhood of vertices in β(t)

 many states; too large for the desired
running time!

(q ⋅ 2q)𝗍𝗐+1

Desired running time:
(q + 1)2𝗍𝗐+4 ⋅ nO(1)

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q} t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For color (blue), c = 2 S2 ⊆ {v3, v4, v9}

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

NOTE: Many colors from may not even be used by {1,2,⋯, q} χ

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

NOTE: Many colors from may not even be used by {1,2,⋯, q} χ

Key Insight

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

NOTE: Many colors from may not even be used by {1,2,⋯, q} χ

For , A = {v7, v9} qA = 2

Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

At most many!q𝗍𝗐+1

At most many!(2𝗍𝗐+1)𝗍𝗐+1

At most many!(q + 1)2𝗍𝗐+1

Instead of remembering the color subsets in the neighborhood of
vertices in , classify colors according to where they appear, and
remember only the number of them!

β(t)

Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

At most many!q𝗍𝗐+1

At most many!(2𝗍𝗐+1)𝗍𝗐+1

At most many!(q + 1)2𝗍𝗐+1

No. of states are bounded by: (q + 1)2𝗍𝗐+4

Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

At most many!q𝗍𝗐+1

At most many!(2𝗍𝗐+1)𝗍𝗐+1

At most many!(q + 1)2𝗍𝗐+1

This makes computing
solutions harder from the

descendant:

FIX: Another layer of
Integer Linear

Programming based
dynamic programming!

No. of states are bounded by: (q + 1)2𝗍𝗐+4

But the trouble doesn’t end!

Planar Square Coloring

Planar Square Coloring has -time algorithm.2O(n2/3 log n)

Weird Looking Running Time?

Interplay between two algorithms

ALGORITHM

Planar Square Coloring

ALGO 1:

Planar Square Coloring has an -time algorithmqO(qn)

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

If q ≤ n1/3

If q ≥ n1/3

-time algorithm!2O(n2/3 log n)

Planar Square Coloring

ALGO 1:

Planar Square Coloring has an -time algorithmqO(qn)

Planar Square Coloring

ALGO 1:

Planar Square Coloring has an -time algorithmqO(qn)

We show that the treewidth of is bounded by

 = the maximum degree of a vertex in

G2 O(nΔ)

Δ G

Planar Square Coloring

ALGO 1:

Planar Square Coloring has an -time algorithmqO(qn)

We show that the treewidth of is bounded by

 = the maximum degree of a vertex in

G2 O(nΔ)

Δ G

RECALL:

Coloring has a -time algorithm

, for a yes-instance of Planar Square Coloring

qO(𝗍𝗐) ⋅ nO(1)

q ≥ Δ + 1

Planar Square Coloring

ALGO 1:

Planar Square Coloring has an -time algorithmqO(qn)

We show that the treewidth of is bounded by

 = the maximum degree of a vertex in

G2 O(nΔ)

Δ G

RECALL:

Coloring has a -time algorithm

, for a yes-instance of Planar Square Coloring

qO(𝗍𝗐) ⋅ nO(1)

q ≥ Δ + 1

Planar Square Coloring

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

Graph G

u

If , sufficiently many colors available to
color , if the other vertices are already colored.

|N(u) | ≤ q − 1
u

N(u)

Planar Square Coloring

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

Graph G

u

N(u) Important vertices: those
with at least q neighbors

U

If , sufficiently many colors available to
color , if the other vertices are already colored.

|N(u) | ≤ q − 1
u

Planar Square Coloring

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

Graph G[N[U]]

U
N(U)

u v

w

Planar Square Coloring

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

Graph G[N[U]]

U
N(U)

Distance 3-dominating
set of size O(n /q) X

Planar Square Coloring

Special tree decomposition for G[N[U]]

At most verticesO(n /q)

 children;
size of green bags:

O(n /q)
O(1)

r

Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color used by , the vertices
that have a color vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

The number of colors, , NOT used by , with
neighborhood exactly .

qA χ
A ⊆ β(t)

At most many!q𝗍𝗐+1

At most many!(2𝗍𝗐+1)𝗍𝗐+1

At most many!(q + 1)2𝗍𝗐+1

No. of states are bounded by: (q + 1)2𝗍𝗐+4 ⋅ nO(1)

But the trouble doesn’t end!

This makes computing
solutions harder from the

descendant:

FIX: Another layer of
Integer Linear

Programming based
dynamic programming!

Planar Square Coloring

Special tree decomposition for G[N[U]]

At most verticesO(n /q)

 children;
size of green bags:

O(n /q)
O(1)

Remember χ : β(r) → {1,2,⋯, q}
At most many!qO(n/q) r

Planar Square Coloring

Special tree decomposition for G[N[U]]

At most verticesO(n /q)

 children;
size of green bags:

O(n /q)
O(1)

Remember χ : β(r) → {1,2,⋯, q}
At most many!qO(n/q) r

Colors in the green children of r

At most many!qO(n/q)

Planar Square Coloring

Special tree decomposition for G[N[U]]

At most verticesO(n /q)

 children;
size of green bags:

O(n /q)
O(1)

Remember χ : β(r) → {1,2,⋯, q}
At most many!qO(n/q) r

Colors in the green children of r

At most many!qO(n/q)

Tracking number of unused colors by χ

FIX: Another layer of
dynamic programming!

Planar Square Coloring

ALGO 2:

Planar Square Coloring has an -time algorithm2O(n log n
q)

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an
unusual running time.

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an
unusual running time.

For Planar Square Coloring we obtained a sub-exponential
algorithm.

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an
unusual running time.

For Planar Square Coloring we obtained a sub-exponential
algorithm.

Can we obtain a sub-exponential time algorithm for Square
Coloring on H-minor free graphs?

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an
unusual running time.

For Planar Square Coloring we obtained a sub-exponential
algorithm.

Can we obtain a sub-exponential time algorithm for Square
Coloring on H-minor free graphs?

How do the algorithmic complexity vary when we look at
distance d-colorings?

Thank You!

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an
unusual running time.

For Planar Square Coloring we obtained a sub-exponential
algorithm.

Can we obtain a sub-exponential time algorithm for Square
Coloring on H-minor free graphs?

How do the algorithmic complexity vary when we look at
distance d-colorings?

