

RTA 2023, NISER Bhubaneshwar

Akanksha Agrawal Indian Institute of Technology Madras

Joint work with Dániel Marx, Daniel Neuen and Jasper Slusallek

Roadmap

- Algorithm for Coloring based on dynamic programming over tree decompositions.
- Our algorithm for bounded treewidth graphs
- Our algorithm on planar graphs
- ***** Conclusion & Open problems

Graph Coloring

Square of a graph

 $dist_G(u, v)$ = the number of edges in the shortest path between u and v in G

Parameterized Problems

Classical problem coupled with an integer, called the parameter, with each of the instance.

These integers measure a certain property of the input or output, or both

- Most classical one-the input size
- Radix Sort: Maximum number of bits
- Mow tree-like is the input graph

Fixed Parameter Tractable (FPT) Algorithms:

An algorithm for a parameterized problem running in time $f(k) \cdot poly(n)$, where k is the parameter and n is the input size.

Tree Decomposition & Treewidth

Graph G

Tree Decomposition $(T, \beta : V(T) \rightarrow 2^{V(G)})$

- Each vertex is contained in at least one bag.
- Both endpoints of an edge are contained in some bag.
- The set of bags containing a vertex forms a connected subtree.

Tree Decomposition & Treewidth

Graph G

Tree Decomposition $(T, \beta : V(T) \rightarrow 2^{V(G)})$

- Each vertex is contained in at least one bag.
 - Both endpoints of an edge are contained in some bag.
- The set of bags containing a vertex forms a connected subtree.

Width of (T, β) : Maximum bag size – 1 Treewidth, tw(G): best such width

Tree Decomposition & Treewidth

Easy to check:

If G is a star, its treewidth is 1 and the treewidth of G^2 is n-1

NP-completeness:

Some polynomial time cases:

Coloring	Square Coloring
For each fixed $q \ge 3$	For each fixed $q \ge 4$
For each $q \leq 2$	For each $q \leq 3$
Interval graphs	Interval graphs
Chordal graphs	Trees

FPT Results:

Coloring $2^{O(\mathsf{tw}\log\mathsf{tw})} \cdot n$

FPT Results:

Coloring $2^{O(\mathsf{tw}\log\mathsf{tw})} \cdot n$

$$(q+1)^{2^{8\mathsf{tw}}+1} \cdot n^{O(1)}$$

Square Coloring admits an algorithm running in time $(q + 1)^{2^{tw+4}} \cdot n^{O(1)}$.

The above algorithm is essentially the best under ETH:

Square Coloring has no $f(tw) \cdot n^{(2-\epsilon)^{tw}}$ -time algorithm.

Our Results On Planar Graphs

NOTE: Four Color Theorem => for each $q \ge 4$, Planar Coloring is in polynomial time

Our Results On Planar Graphs

Our Results On Planar Graphs

Algorithm for Coloring param. by treewidth: dynamic programming over tree decomposition

Recalling Tree Decomposition

Width of (T, β) : Maximum bag size – 1 Treewidth, tw(G): best such width

Tree Decomposition $(T, \beta : V(T) \rightarrow 2^{V(G)})$ for graph G

Tree Decomposition $(T, \beta : V(T) \rightarrow 2^{V(G)})$ for graph G Root Graph G induced on vertices on and below *t*: G_t

We go in a bottom up-fashion, starting from the leaves.

X

Solving for a bag, when all its descendant bags are resolved.

Solving for a bag, when all its descendant bags are resolved.

Solving for a bag, when all its descendant bags are resolved.

Why the previous DP fails for Square Coloring?

Failure for Square Coloring

Failure for Square Coloring

First Attempt At Fixing the Issue

Failure Again!

* Instead of remembering the color subsets in the neighborhood of vertices in $\beta(t)$, classify colors according to where they appear, and remember only the number of them!

No. of states are bounded by: $(q + 1)^{2^{tw+4}}$

Remember
$$\chi : \beta(t) \rightarrow \{1, 2, \cdots, q\}$$

At most q^{tw+1} many!

♦ For each color *c* used by χ , the vertices *S_c* ⊆ $\beta(t)$ that have a color *c* vertex in their neighborhood.

At most $(2^{tw+1})^{tw+1}$ many!

𝔅 The number of colors, q_A , NOT used by χ , with neighborhood exactly A ⊆ β(t).

At most $(q + 1)^{2^{tw+1}}$ many!

No. of states are bounded by: $(q + 1)^{2^{tw+4}}$

But the trouble doesn't end!

We Remember
$$\chi : \beta(t) \rightarrow \{1, 2, \cdots, q\}$$

At most q^{tw+1} many!

♦ For each color *c* used by χ , the vertices *S_c* ⊆ $\beta(t)$ that have a color *c* vertex in their neighborhood.

At most $(2^{tw+1})^{tw+1}$ many!

𝔅 The number of colors, q_A , NOT used by χ , with neighborhood exactly A ⊆ β(t).

At most $(q + 1)^{2^{tw+1}}$ many!

This makes computing solutions harder from the descendant:

FIX: Another layer of Integer Linear Programming based dynamic programming!

ALGO 1:

Planar Square Coloring has an
$$q^{O(\sqrt{qn})}$$
-time algorithm

ALGO 1:

Planar Square Coloring has an $q^{O(\sqrt{qn})}$ -time algorithm

We show that the treewidth of G^2 is bounded by $O(\sqrt{n\Delta})$

 $\Delta =$ the maximum degree of a vertex in G

ALGO 1:

Planar Square Coloring has an $q^{O(\sqrt{qn})}$ -time algorithm

 \circledast We show that the treewidth of G^2 is bounded by $O(\sqrt{n\Delta})$

 Δ = the maximum degree of a vertex in G

RECALL:

Coloring has a $q^{O(tw)} \cdot n^{O(1)}$ -time algorithm

 $q \ge \Delta + 1$, for a yes-instance of Planar Square Coloring

No. of states are bounded by: $(q+1)^{2^{tw+4}} \cdot n^{O(1)}$

But the trouble doesn't end!

Remember
$$\chi : \beta(t) \rightarrow \{1, 2, \cdots, q\}$$

At most q^{tw+1} many!

𝔅 For each color *c* used by *χ*, the vertices $S_c ⊆ β(t)$ that have a color *c* vertex in their neighborhood.

At most $(2^{tw+1})^{tw+1}$ many!

𝔅 The number of colors, q_A , NOT used by χ , with neighborhood exactly A ⊆ β(t).

At most $(q + 1)^{2^{tw+1}}$ many!

This makes computing solutions harder from the descendant:

FIX: Another layer of Integer Linear Programming based dynamic programming!

ALGO 2:

Planar Square Coloring has an $2^{O(\frac{n \log n}{q})}$ -time algorithm

We saw an ETH-tight algorithm for Square Coloring with an unusual running time.

For Planar Square Coloring we obtained a sub-exponential algorithm.

- We saw an ETH-tight algorithm for Square Coloring with an unusual running time.
- For Planar Square Coloring we obtained a sub-exponential algorithm.
- Can we obtain a sub-exponential time algorithm for Square Coloring on H-minor free graphs?

- We saw an ETH-tight algorithm for Square Coloring with an unusual running time.
- For Planar Square Coloring we obtained a sub-exponential algorithm.
- Can we obtain a sub-exponential time algorithm for Square Coloring on H-minor free graphs?
- How do the algorithmic complexity vary when we look at distance d-colorings?

- We saw an ETH-tight algorithm for Square Coloring with an unusual running time.
- For Planar Square Coloring we obtained a sub-exponential algorithm.
- Can we obtain a sub-exponential time algorithm for Square Coloring on H-minor free graphs?
- How do the algorithmic complexity vary when we look at distance d-colorings?

