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V(G2) = V(G)
E(G2) = {{u, v} ∣ 1 ≤ 𝖽𝗂𝗌𝗍G(u, v) ≤ 2}

 = the number of edges in the shortest path between  and  in 𝖽𝗂𝗌𝗍G(u, v) u v G
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Why is it different from 
Graph Coloring? Structural properties of the input 

graph may be lost
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WHY DO WE CARE?

Exploit the properties of the input 
graph to obtain fast algorithms



Parameterized Problems

XAMPLES
Most classical one—the input size 

Radix Sort: Maximum number of bits 

How tree-like is the input graph

Classical problem coupled with an integer, called the parameter, with 
each of the instance.

These integers measure a certain 
property of the input or output, or both



Parameterized Problems

Fixed Parameter Tractable (FPT) Algorithms: 

An algorithm for a parameterized problem running in time 
, where  is the parameter and  is the input size.f(k) ⋅ 𝗉𝗈𝗅𝗒(n) k n
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Each vertex is contained in at least one bag. 
Both endpoints of an edge are contained in some bag. 
The set of bags containing a vertex forms a connected 
subtree.

Tree Decomposition & Treewidth

Tree Decomposition (T, β : V(T ) → 2V(G))



B

Graph G

a, b, w

a, b, c

b, c, p, q

a, c, s

A

C
D

ab

c
s

p

q

w

Each vertex is contained in at least one bag. 
Both endpoints of an edge are contained in some bag. 
The set of bags containing a vertex forms a connected 
subtree.

Tree Decomposition (T, β : V(T ) → 2V(G))

Tree Decomposition & Treewidth

Width of : Maximum bag size - 1 
Treewidth, : best such width

(T, β)
𝗍𝗐(G)



Tree Decomposition & Treewidth

Easy to check: 

If  is a star, its treewidth is  and the treewidth of  is G 1 G2 n − 1



NP-completeness: For each fixed  For each fixed 

Some polynomial time 
cases:

For each For each 

Coloring Square Coloring

q ≥ 3 q ≥ 4

Note a graph  with max. degree , for  we need at least 
 colors. Thus, for ,  must be of paths and cycles

G Δ G2

Δ + 1 q ≤ 3 G

q ≤ 2 q ≤ 3

u
v

w

A Few Of The Prior Results



NP-completeness: For each fixed  For each fixed 

Some polynomial time 
cases:

For each For each 

Interval graphs Interval graphs

Chordal graphs Trees

Coloring Square Coloring

q ≥ 3 q ≥ 4

q ≤ 2 q ≤ 3

A Few Of The Prior Results



FPT Results:

Coloring Square Coloring

qO(𝗍𝗐) ⋅ n

2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

For  can be assumed to be 
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A Few Of The Prior Results

FPT Results:

No FPT algorithm 
param. by treewidth

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

Typically, for a parameterized problem either: 

no FPT algorithm, but there is -time algorithm 
or, it has an FPT algorithm

nO(𝗍𝗐)



Square Coloring admits an algorithm running in time .(q + 1)2𝗍𝗐+4 ⋅ nO(1)

Our Results For General Graphs

The above algorithm is essentially the best under ETH: 

Square Coloring has no -time algorithm.f(𝗍𝗐) ⋅ n(2−ϵ)𝗍𝗐



Our Results On Planar Graphs

Planar Square Coloring is NP-hard for each fixed .q ≥ 4

NOTE: Four Color Theorem => for each , 
Planar Coloring is in polynomial time

q ≥ 4



Our Results On Planar Graphs

FPT Results:

Planar

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n
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Planar Square Coloring is NP-hard for each fixed .q ≥ 4
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Our Results On Planar Graphs

FPT Results:

Planar

Coloring Square Coloring

(q + 1)28𝗍𝗐+1 ⋅ nO(1)2O(𝗍𝗐 log 𝗍𝗐) ⋅ n

2O(n log n)

Planar Square Coloring is NP-hard for each fixed .q ≥ 4

Planar Square Coloring has -time algorithm.2O(n2/3 log n)

2O( n)



Algorithm for Coloring param. by treewidth: 
dynamic programming over tree decomposition 



Graph G

ab

c
s

p

q

w

Each vertex is contained in at least one bag. 
Both endpoints of an edge are contained in some bag. 
The set of bags containing a vertex forms a connected 
subtree.

Tree Decomposition (T, β : V(T ) → 2V(G))

Width of : Maximum bag size - 1 
Treewidth, : best such width

(T, β)
𝗍𝗐(G)

Recalling Tree Decomposition

Root

a, b, w

a, b, c

b, c, p, q
a, c, s



We go in a bottom up-fashion, starting from the leaves. 

Tree Decomposition  for graph (T, β : V(T ) → 2V(G)) G

Algorithm for Coloring

Root
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Tree Decomposition  for graph (T, β : V(T ) → 2V(G)) G

Algorithm for Coloring

Root



Solving for a bag, when all its descendant bags are resolved.
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Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph  induced on 
vertices on and below : 

G
t

Gt

t

NOTE:  many such choices!qO(𝗍𝗐)

For each , check if  can be extended to a proper 
coloring for .

χ : β(t) → {1,2,⋯, q} χ
Gt



Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph  induced on 
vertices on and below : 

G
t

Gt

t

t1 t2

Way to ensure that:  
 has at most 2 children 

 varies in at most one vertex from  and 
t
β(t) β(t1) β(t2)



Solving for a bag, when all its descendant bags are resolved.

Algorithm for Coloring

Graph  induced on 
vertices on and below : 

G
t

Gt

t

t1 t2

For each , check if  can be extended to a proper 
coloring for .

χ : β(t) → {1,2,⋯, q} χ
Gt

Can be easily done!

RUNTIME: qO(𝗍𝗐) ⋅ n



Why the previous DP fails for Square Coloring?



Failure for Square Coloring
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u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)



Failure for Square Coloring
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Not enough to only 
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2



First Attempt At Fixing the Issue

t

Not enough to only 
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2

Also remember the color subset in the neighborhood of vertices in β(t)



Failure Again!

t

Not enough to only 
“remember” the colors of β(t)

v

u ∈ V(Gt)∖β(t)

w ∈ V(G)∖V(Gt)

Edge in G2

Also remember the color subset in the neighborhood of vertices in β(t)

 many states; too large for the desired 
running time!

(q ⋅ 2q)𝗍𝗐+1

Desired running time: 
(q + 1)2𝗍𝗐+4 ⋅ nO(1)
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remember only the number of them!
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Instead of remembering the color subsets in the neighborhood of 
vertices in , classify colors according to where they appear, and 
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For color  (blue),   c = 2 S2 ⊆ {v3, v4, v9}

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

For each color  used by , the vertices  
that have a color  vertex in their neighborhood.

c χ Sc ⊆ β(t)
c
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Key Insight

Instead of remembering the color subsets in the neighborhood of 
vertices in , classify colors according to where they appear, and 
remember only the number of them!

β(t)

Remember χ : β(t) → {1,2,⋯, q}

For each color  used by , the vertices  
that have a color  vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

The number of colors, , NOT used by , with 
neighborhood exactly .

qA χ
A ⊆ β(t)

NOTE: Many colors from  may not even be used by {1,2,⋯, q} χ

For ,   A = {v7, v9} qA = 2



Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color  used by , the vertices  
that have a color  vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

t 1 2 4 1 1 2 49 6
v1 v2 v3 v4 v5 v6 v7 v8 v9

The number of colors, , NOT used by , with 
neighborhood exactly .

qA χ
A ⊆ β(t)

At most  many!q𝗍𝗐+1

At most  many!(2𝗍𝗐+1)𝗍𝗐+1

At most  many!(q + 1)2𝗍𝗐+1

Instead of remembering the color subsets in the neighborhood of 
vertices in , classify colors according to where they appear, and 
remember only the number of them!

β(t)
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c χ Sc ⊆ β(t)
c
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No. of states are bounded by: (q + 1)2𝗍𝗐+4



Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color  used by , the vertices  
that have a color  vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

The number of colors, , NOT used by , with 
neighborhood exactly .

qA χ
A ⊆ β(t)

At most  many!q𝗍𝗐+1

At most  many!(2𝗍𝗐+1)𝗍𝗐+1

At most  many!(q + 1)2𝗍𝗐+1

This makes computing 
solutions harder from the 

descendant: 

FIX: Another layer of 
Integer Linear 

Programming based 
dynamic programming!

No. of states are bounded by: (q + 1)2𝗍𝗐+4

But the trouble doesn’t end!



Planar Square Coloring

Planar Square Coloring has -time algorithm.2O(n2/3 log n)

Weird Looking Running Time? 

Interplay between two algorithms



ALGORITHM

Planar Square Coloring

ALGO 1: 

Planar Square Coloring has an -time algorithmqO( qn)

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )

If q ≤ n1/3

If q ≥ n1/3

-time algorithm!2O(n2/3 log n)
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Planar Square Coloring

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )

Graph G

u

If , sufficiently many colors available to 
color , if the other vertices are already colored.

|N(u) | ≤ q − 1
u

N(u)



Planar Square Coloring

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )

Graph G

u

N(u) Important vertices: those 
with at least q neighbors

U

If , sufficiently many colors available to 
color , if the other vertices are already colored.

|N(u) | ≤ q − 1
u



Planar Square Coloring

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )

Graph G[N[U]]

U
N(U)

u v

w



Planar Square Coloring

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )

Graph G[N[U]]

U
N(U)

Distance 3-dominating 
set of size O(n /q) X



Planar Square Coloring

Special tree decomposition for G[N[U]]

At most  verticesO(n /q)

 children;  
size of green bags: 

O(n /q)
O(1)

r



Key Insight

Remember χ : β(t) → {1,2,⋯, q}

For each color  used by , the vertices  
that have a color  vertex in their neighborhood.

c χ Sc ⊆ β(t)
c

The number of colors, , NOT used by , with 
neighborhood exactly .

qA χ
A ⊆ β(t)

At most  many!q𝗍𝗐+1

At most  many!(2𝗍𝗐+1)𝗍𝗐+1

At most  many!(q + 1)2𝗍𝗐+1

No. of states are bounded by: (q + 1)2𝗍𝗐+4 ⋅ nO(1)

But the trouble doesn’t end!

This makes computing 
solutions harder from the 

descendant: 

FIX: Another layer of 
Integer Linear 

Programming based 
dynamic programming!
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Planar Square Coloring

Special tree decomposition for G[N[U]]

At most  verticesO(n /q)

 children;  
size of green bags: 

O(n /q)
O(1)

Remember χ : β(r) → {1,2,⋯, q}
At most  many!qO(n/q) r

Colors in the green children of r

At most  many!qO(n/q)

Tracking number of unused colors by  χ

FIX: Another layer of 
dynamic programming!



Planar Square Coloring

ALGO 2: 

Planar Square Coloring has an -time algorithm2O( n log n
q )
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Thank You!

Conclusion & Open Problems

We saw an ETH-tight algorithm for Square Coloring with an 
unusual running time. 

For Planar Square Coloring we obtained a sub-exponential 
algorithm. 

Can we obtain a sub-exponential time algorithm for Square 
Coloring on H-minor free graphs? 

How do the algorithmic complexity vary when we look at 
distance d-colorings?


