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Classical computation

m Inputs and outputs: {0,1}"
m Gates: ANDs, ORs and NOTs

m The computation is efficient if it uses only a polynomial number of
basic gates.

m Randomized gates: R, generates a uniformly random bit
m Allow errors but would like the output to be correct with high probability



Veritying classical computation

m Suppose some computing device claims to solve a large Hamilton
cycle instance.

m We do not have the means to solve and verify this claim ourselves.
m But we can still verify the claim efficiently.

m The problem is in NP. So, we can reduce it to a 3-SAT instance and
ask the solver to provide us a satisfying assignment.



Quantum computation

= Similar to randomized computation, but it is reversible.
m The Hadamard gate is like a random coin toss, but the input influences
the sign of the amplitude. It is usually written as a matrix.
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H is its own inverse.

m In general, the state of an n-qubit system is an amplitude vector of 2"
entries. At each step, when a gate is applied, the change in the state
vector is determined by a unitary matrix.

= We will need (for today) two special one-qubit gates:
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The power of quantum

m We know of some problems that one can solve more easily on a
quantum computer.

= A number can be factored in polynomial time on a quantum algorithm.
(Shor 1994).

= Quantum cryptography can do things that classical cryptography can't.
= But we do not yet have even a decent quantum computer ...



What if...?

® ...quantum computers of moderate size perform certain tasks more
efficiently than classical computers?

= Noisy Intermediate-Scale Quantum Technology
= Quantum supremacy

m Can we verify that these quantum computers are indeed solving the
problem faster?

= Note the problem they solve may not be in NP.



Urmila Mahadev’s work

Theorem

Assuming the existence of an extended trapdoor claw-free family, all
decision problems that can be efficiently computed in quantum polynomial
time can be verified by an efficient classical machine by interacting with the
quantum machine.

v

A family of extended trapdoor claw-free function can be constructed under
the assumption that the problem of learning with errors is hard for quantum
computers.




Learning with errors

m Two special distributions on matrix-vector pairs.

m (A As+ e (mod q)) where Ais a random n x m matrix and s is a
random m-dimensional vector and e is drawn from a special trucated
Gaussian distribution on m-dimensional vectors.

m (A, u), where u is uniformly chosen vector.

m The two distributions are far apart statistically.

m Assumption: No quantum polynomial-time procedure can distinguish
these distributions with even negligible advantage.

Based on the hardness of the LWE problem, one can construct a family of
extended trapdoor claw-free functions.




Trapdoor functions

Trapdoor claw-free functions

A family F = {fx : X — Y} such that the functions f o and f, 1 are injective
and their images are identical. It is computationally hard given k to find a
string d # 0, the bit d - (xo ® x1), where fy(xo) = fi(x1). The trapdoor
allows one to invert the function.
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Trapdoor injective functions

A family G = {gkp : X — Y}, such that the images of gk, and gx 1 are
disjoint. The trapdoor t, helps invert the function.

The keys k for claw-free and injective functions are computationally
indistinguishable.



Trapdoor functions aided measurement

Prover Has a state |¢) = a0 |0) + a4 |1).

Verifier Sends a key k (for either a claw-free function or an injective
function), but holds on to the trapdoor

Prover Would like to help the verfier make a measurement of |¢).
Prepares |¢) >, |x). Appends the bit in the first register to the
key and computes the function of x, and sends the result y to
the Verifier.

Verfier The Verifier either asks for a standard basis measurement or a
Hadamard measurement of all of Prover’s registers.

Prover Sends the bits to the Verifier.
Verifier Decodes the result.



The verifier cannon cheat

m If the Prover does pass the Verifier's checks with reasonable
probability, then the bits the Verfier receives do correspond to
measurement of an underlying quantum state.

m These measurement outcomes can be used by the Verifier to check if
the quantum computer’s claims are justified.




Thank you! ]




