
Urmila Mahadev’s work on classical verification of
quantum computations

Jaikumar Radhakrishnan

Tata Institute of Fundamental Research, Mumbai

February 7, 2019



Urmila Mahadev, PhD student, UC Berkeley

Urmila Mahadev: Classical Verification of
Quantum Computations. FOCS 2018: 259-267.
(Best paper and best student paper!)
Urmila Mahadev: Classical Verification of
Quantum Computations.
https://arxiv.org/abs/1804.01082
Urmila Mahadev: Classical Verification of
Quantum Computations. Talk at IAS:
https://www.youtube.com/watch?v=kql5dSywvy0



Classical computation

Inputs and outputs: {0,1}n

Gates: ANDs, ORs and NOTs
The computation is efficient if it uses only a polynomial number of
basic gates.
Randomized gates: R, generates a uniformly random bit
Allow errors but would like the output to be correct with high probability



Verifying classical computation

Suppose some computing device claims to solve a large Hamilton
cycle instance.
We do not have the means to solve and verify this claim ourselves.
But we can still verify the claim efficiently.
The problem is in NP. So, we can reduce it to a 3-SAT instance and
ask the solver to provide us a satisfying assignment.



Quantum computation

Similar to randomized computation, but it is reversible.
The Hadamard gate is like a random coin toss, but the input influences
the sign of the amplitude. It is usually written as a matrix.

H =
1√
2

(
1 1
1 −1

)
H is its own inverse.
In general, the state of an n-qubit system is an amplitude vector of 2n

entries. At each step, when a gate is applied, the change in the state
vector is determined by a unitary matrix.
We will need (for today) two special one-qubit gates:

X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)



The power of quantum

We know of some problems that one can solve more easily on a
quantum computer.
A number can be factored in polynomial time on a quantum algorithm.
(Shor 1994).
Quantum cryptography can do things that classical cryptography can’t.
But we do not yet have even a decent quantum computer . . .



What if . . . ?

. . . quantum computers of moderate size perform certain tasks more
efficiently than classical computers?
Noisy Intermediate-Scale Quantum Technology
Quantum supremacy
Can we verify that these quantum computers are indeed solving the
problem faster?
Note the problem they solve may not be in NP.



Urmila Mahadev’s work

Theorem
Assuming the existence of an extended trapdoor claw-free family, all
decision problems that can be efficiently computed in quantum polynomial
time can be verified by an efficient classical machine by interacting with the
quantum machine.

A family of extended trapdoor claw-free function can be constructed under
the assumption that the problem of learning with errors is hard for quantum
computers.



Learning with errors

Two special distributions on matrix-vector pairs.
(A,As + e (mod q)) where A is a random n ×m matrix and s is a
random m-dimensional vector and e is drawn from a special trucated
Gaussian distribution on m-dimensional vectors.
(A,u), where u is uniformly chosen vector.

The two distributions are far apart statistically.
Assumption: No quantum polynomial-time procedure can distinguish
these distributions with even negligible advantage.

Based on the hardness of the LWE problem, one can construct a family of
extended trapdoor claw-free functions.



Trapdoor functions

Trapdoor claw-free functions
A family F = {fk ,b : X → Y} such that the functions fk ,0 and fk ,1 are injective
and their images are identical. It is computationally hard given k to find a
string d 6= 0, the bit d · (x0 ⊕ x1), where f0(x0) = f1(x1). The trapdoor tk
allows one to invert the function.

Trapdoor injective functions
A family G = {gk ,b : X → Y}, such that the images of gk ,0 and gk ,1 are
disjoint. The trapdoor tk helps invert the function.

The keys k for claw-free and injective functions are computationally
indistinguishable.



Trapdoor functions aided measurement

Prover Has a state |φ〉 = α0 |0〉+ α1 |1〉.
Verifier Sends a key k (for either a claw-free function or an injective

function), but holds on to the trapdoor tk
Prover Would like to help the verfier make a measurement of |φ〉.

Prepares |φ〉
∑

x |x〉. Appends the bit in the first register to the
key and computes the function of x , and sends the result y to
the Verifier.

Verfier The Verifier either asks for a standard basis measurement or a
Hadamard measurement of all of Prover’s registers.

Prover Sends the bits to the Verifier.
Verifier Decodes the result.



The verifier cannon cheat

If the Prover does pass the Verifier’s checks with reasonable
probability, then the bits the Verfier receives do correspond to
measurement of an underlying quantum state.
These measurement outcomes can be used by the Verifier to check if
the quantum computer’s claims are justified.



Thank you!


