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Introduction

Eternal Vertex Cover (EV C) problem

o Introduced by Klostermeyer et al.! in 2009
o Attacker-defender game in which k£ guards are placed on distinct vertices of G

o In each round, attacker chooses an edge to attack
@ As a response to the attack, defender has to move guards such that

o At least one guard must move across the attacked edge.
o Others can either remain in the current position or move to an adjacent vertex.
o At most one guard exists on any vertex.

o If an attack cannot be defended, the attacker wins.

o The defender wins if he can defend any sequence of infinite attacks.

e Eternal vertex cover number (evc) of a graph G: The minimum number k such
that the defender has a winning strategy with k guards on G.

e For any graph G, mvc(G) < eve(G)
o Given a graph G and an integer k, checking if eve(G) < k is NP-hard?

'William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin,2009
2Fedor V. Fomin, Serge Gaspers, Petr A. Golovach, Dieter Kratsch, and Saket Saurabh,Inf.
Process. Lett.,2010
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Introduction

Eternal Vertex Cover Number (evc)-Some Examples

o mvc(Py) =2 and eve(Py) =3
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Introduction

Contribution

It is known® that for any graph G, mvc(G) < eve(G) < 2mve(G).

o Klostermeyer et al. gave a characterization of graphs with eve(G) = 2mve(G)

Characterization of graphs with evc(G) = mve(G) remains open.

We achieve such a characterization for a subclass of graphs.

o This subclass include chordal graphs and internally triangulated planar graphs.

3William F. Klostermeyer and C. M. Mynhardt. Australas. J.-Combin,2009
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tribution

o Tt is known?® that for any graph G, mvc(G) < eve(G) < 2mve(G).

o Klostermeyer et al. gave a characterization of graphs with eve(G) = 2mve(G)

Characterization of graphs with evc(G) = mve(G) remains open.

We achieve such a characterization for a subclass of graphs.

o This subclass include chordal graphs and internally triangulated planar graphs.

Overview of the Approach

e A simple necessary condition for evc(G) = mvc(G) is proposed here.

o For many graph classes including chordal and internally triangulated
planar graphs, the necessary condition is also shown to be sufficient.

e The characterization leads to the computation of eve(G) in polynomial
time for some graph classes like biconnected chordal graphs.

e For some graphs including chordal graphs, if mvc(G) = eve(G), we have
a polynomial time strategy for guard movements.

3William F. Klostermeyer and C. M. Mynhardt. Australas. J.-Combin,2009
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Characterization

Characterization for eve(G) = mve(G) for some graph classes

Necessary condition for any graph

If eve(G) = mve(G), then for every vertex v € V(G), 3 a min VC of G containing v.

N

Proof:

@ Suppose there are mvc guards and 3 a vertex v that does not belong to
any min VC of G.

@ When an edge incident to v is attacked, v has to be occupied in the
next configuration.

@ Since there is no min VC containing v, attack cannot be handled.

IIT Palakkad
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If eve(G) = mve(G), then for every vertex v € V(G), 3 a min VC of G containing v.

N

Proof:

@ Suppose there are mvc guards and 3 a vertex v that does not belong to
any min VC of G.

@ When an edge incident to v is attacked, v has to be occupied in the
next configuration.

@ Since there is no min V' C containing v, attack cannot be handled.

\ J

Sufficiency condition for some graph classes

@ The necessary condition is also sufficient for graphs in which all min VC's are
connected

@ Biconnected chordal and biconnected internally triangulated graphs are some
examples of such graphs.

@ The characterization can be generalized for handling more graph classes.

Veena Prabhakaran IIT Palakkad February 19, 2019



Characterization

How are connected vertex covers helpful?

o The connected vertex cover number, cvc(G), is the minimum cardinality of a
connected vertex cover of G.

Lemma (Klostermeyer et al.)

Let G be a nontrivial, connected graph and D be a vertex cover of G such that G[D]
is connected. Then, eve(G) < cve(G) +1 < | |+1.

Figure: Handling attack using connected VC*

4William F. Klostermeyer and C. M. Mynhardt. Australas. J.-Combin,2009
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Characterization

Characterization for eve(G) = mve(G) for graphs with all min VCs
connected

Theorem

Let G(V, E) be a connected graph with |V| > 2 such that every min VC of G is
connected. Then eve(G) = mve(G) if and only if for every vertex v € V, there ewists
a min VC of G containing v.

Proof:

—> Trivial from necessary condition

<= Claim 1: For any min VC S; of G, an attack on any edge uv with v € S; and v ¢ S; can be
defended by moving to a min VC S; such that v € S; and [S; AS;| is minimum.

@ X and Y are
independent sets

@ H=GXWY]isa
bipartite graph

@ Since |S;| = |S;],
|X]=1Y]
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Proof of Claim 1

Claim 1.1: H = G[X WY] has a perfect matching.
( Recall: H = G[X WY] is a bipartite graph ),

Proof strategy:
o Consider Y C Y
o X' = Nu(Y)
Suppose | X'| < [Y'].
o Let §'=ZW(Y\Y)wWX'
IS < mve(G). =«

VY’ CY, |[Nu(Y")| > |Y’| and by Hall’s theorem H has a perfect matching.

Veena Prabhakaran IIT Palakkad February 19, 2019 9 /17



Proof of Claim 1...

Claim 1.2: Yw € X, the bipartite graph H \ {w,v} has a perfect matching.
( Recall: S; is a min VC such that v € S; and |S;AS;]| is minimum )

Proof strategy:

o Y/ C (Y \{u})
IX'| = [Nu (V"))
By Claim 1.1, | X'| > |Y”].
Suppose | X'| = [Y'].
Let ' =ZyW(Y\Y')uw X’
[S'AS;| < |S;A8:]. =<
o Therefore, | X'| > |Y’|

VY’ C (Y \{v}), INu(Y')\ {w}| > |Y’| and by Hall’s theorem, H \ {w,v} has a
perfect matching.
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wcterization

Handling attack on uv by moving to S;

Claim 1: For any min VC S; of G, an attack on any edge uv with v € S; and v ¢ S; can be
defended by moving to a min VC S; such that v € S; and |S; AS;| is minimum.

@ u € X : (Using perfect matching in H\ {u,v})

@ u ¢ X : (Using perfect matching in H\ {w,v}) Z=15N5;

Connectivity of S; is crucial here
e w : nearest vertex of u in X
o P : shortest path from u to w in S;

ry 19, 2019 11 /17



Characterization

Deciding eve(G) when all min VC's are connected

Let G(V, E) be a graph for which every min VC is connected. If for every vertez v € V,

there exists a min VC S, of G such that v € Sy, then evc(G) = mvc(G). Otherwise,
eve(G@) = mve(G) + 1.

e The second case follows from evc(G) < cve(G) + 1

IIT Palakkad
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Deciding evc(G) when all min VC's are connected

Let G(V, E) be a graph for which every min VC is connected. If for every vertez v € V,
there exists a min VC S, of G such that v € Sy, then evc(G) = mvc(G). Otherwise,
eve(G@) = mve(G) + 1.

e The second case follows from evc(G) < cve(G) + 1

Consequence:
o If all min VCs of G are connected, then deciding evc(G) < k is in NP.

o For biconnected chordal graphs and biconnected internally triangulated graphs,
all min VCs are connected and hence deciding eve(G) < k is in NP.

o If all min VCs of G are connected and the necessary condition can be checked in
polynomial time, then eve(G) can be computed in polynomial time.

e For biconnected chordal graphs, evc(G) can be computed in polynomial time.
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reneralization of the characterization

Necessary condition

Let G(V, E) be any connected graph. Let X C V be the set of cut vertices of
G. If eve(G) = mve(G), then for every vertex v € V' \ X, there exists a min
VC S, of G such that (X U{v}) C S,.

proof idea:
o All vertices of X have to be occupied in all configurations.

e When an edge incident to v is attacked, (X U {v}) has to be
occupied.

,
\.

Sufficiency condition for some class of graphs

Let G(V, E) be a connected graph with |[V| > 2 and X C V be the set of cut
vertices of G. Suppose every min VC S of G with X C S is connected. If for
every vertex v € V\ X, there exists a min VC S, of G such that (XU{v}) C S,,
then eve(G) = mve(G) .

,
\.
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Polynomial time algorithms

o A class of graphs H is called hereditary, if deletion of vertices from any graph G
in ‘H would always yield another graph in H.

o Chordal graphs form a hereditary graph class.

Theorem

If H is a hereditary graph class such that:
@ for every graph G in H, mvc(G) can be computed in polynomial time and
o for every biconnected graph H in H, all vertex covers of H are connected.
Then,
Q for any graph G in H, in polynomial time we can decide whether
eve(G) = mve(QG)
@ for any graph G in H with eve(G) = mve(G), there is a polynomial time strategy
for guard movements using eve(G) guards.
@ for any biconnected graph G in H, in polynomial time we can compute evc(Q).
Moreover, there is a polynomial time strategy for guard movements using eve(Q)
guards.
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Polynomial time strat or guard movements

For any chordal graph G, we can decide in polynomial-time whether
eve(G) = mve(G). Also, if mve(G) = eve(G), there is a polynomial-time strategy for
guard movements using evc(G) guards.

If G is a biconnected chordal graph, then we can determine evc(G) in

polynomial-time. Moreover, there is a polynomial-time strategy for guard movements
using eve(G) guards.
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Conclusion

Conclusion and Open problems

o In certain graph classes, we gave a condition for characterizing graphs with
eve(G) = mve(Q).

The characterization does not hold for biconnected bipartite planar graphs.

Obtaining a characterization for bipartite graphs is an interesting open problem.

Identify other graph classes for which this characterization holds.
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