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Eternal Vertex Cover (EV C) problem

Introduced by Klostermeyer et al.1 in 2009

Attacker-defender game in which k guards are placed on distinct vertices of G

In each round, attacker chooses an edge to attack

As a response to the attack, defender has to move guards such that

At least one guard must move across the attacked edge.

Others can either remain in the current position or move to an adjacent vertex.

At most one guard exists on any vertex.

If an attack cannot be defended, the attacker wins.

The defender wins if he can defend any sequence of infinite attacks.

Eternal vertex cover number (evc) of a graph G: The minimum number k such
that the defender has a winning strategy with k guards on G.

For any graph G, mvc(G) ≤ evc(G)

Given a graph G and an integer k, checking if evc(G) ≤ k is NP-hard2

1William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin,2009
2Fedor V. Fomin, Serge Gaspers, Petr A. Golovach, Dieter Kratsch, and Saket Saurabh,Inf.

Process. Lett.,2010
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Eternal Vertex Cover Number (evc)-Some Examples

mvc(P4) = 2 and evc(P4) = 3
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Contribution

It is known3 that for any graph G, mvc(G) ≤ evc(G) ≤ 2 mvc(G).

Klostermeyer et al. gave a characterization of graphs with evc(G) = 2 mvc(G)

Characterization of graphs with evc(G) = mvc(G) remains open.

We achieve such a characterization for a subclass of graphs.

This subclass include chordal graphs and internally triangulated planar graphs.

Overview of the Approach

A simple necessary condition for evc(G) = mvc(G) is proposed here.

For many graph classes including chordal and internally triangulated
planar graphs, the necessary condition is also shown to be sufficient.

The characterization leads to the computation of evc(G) in polynomial
time for some graph classes like biconnected chordal graphs.

For some graphs including chordal graphs, if mvc(G) = evc(G), we have
a polynomial time strategy for guard movements.

3William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin,2009
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Characterization for evc(G) = mvc(G) for some graph classes

Necessary condition for any graph

If evc(G) = mvc(G), then for every vertex v ∈ V (G), ∃ a min V C of G containing v.

Proof:

Suppose there are mvc guards and ∃ a vertex v that does not belong to
any min V C of G.

When an edge incident to v is attacked, v has to be occupied in the
next configuration.

Since there is no min V C containing v, attack cannot be handled.

Sufficiency condition for some graph classes

The necessary condition is also sufficient for graphs in which all min V Cs are
connected

Biconnected chordal and biconnected internally triangulated graphs are some
examples of such graphs.

The characterization can be generalized for handling more graph classes.

Veena Prabhakaran IIT Palakkad February 19, 2019 6 / 17
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How are connected vertex covers helpful?

The connected vertex cover number, cvc(G), is the minimum cardinality of a
connected vertex cover of G.

Lemma (Klostermeyer et al.)

Let G be a nontrivial, connected graph and D be a vertex cover of G such that G[D]
is connected. Then, evc(G) ≤ cvc(G) + 1 ≤ |D|+1.

G

D

d1

d2

d3

v1

v2

v3

G

D

d1

d2

d3

v1

v2

v3

Figure: Handling attack using connected VC4

4William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin,2009
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Characterization for evc(G) = mvc(G) for graphs with all min VCs
connected

Theorem

Let G(V,E) be a connected graph with |V | ≥ 2 such that every min VC of G is
connected. Then evc(G) = mvc(G) if and only if for every vertex v ∈ V , there exists
a min VC of G containing v.

Proof:
=⇒ Trivial from necessary condition

⇐= Claim 1: For any min VC Si of G, an attack on any edge uv with u ∈ Si and v /∈ Si can be
defended by moving to a min VC Sj such that v ∈ Sj and |Si4Sj | is minimum.

X and Y are
independent sets

H = G[X ] Y ] is a
bipartite graph

Since |Si| = |Sj |,
|X| = |Y |

u v

u

v
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Proof of Claim 1

Claim 1.1: H = G[X ] Y ] has a perfect matching.
( Recall: H = G[X ] Y ] is a bipartite graph ),

X' Y' Proof strategy:

Consider Y ′ ⊆ Y

X ′ = NH(Y ′)

Suppose |X ′| < |Y ′|.
Let S′ = Z ] (Y \Y ′)]X ′

|S′| < mvc(G). ⇒⇐

∀Y ′ ⊆ Y , |NH(Y ′)| ≥ |Y ′| and by Hall’s theorem H has a perfect matching.

Veena Prabhakaran IIT Palakkad February 19, 2019 9 / 17
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Proof of Claim 1...

Claim 1.2: ∀w ∈ X, the bipartite graph H \ {w, v} has a perfect matching.
( Recall: Sj is a min VC such that v ∈ Sj and |Si4Sj | is minimum )

X' Y'
vw

Proof strategy:

Y ′ ⊆ (Y \ {v})
|X ′| = |NH(Y ′)|
By Claim 1.1, |X ′| ≥ |Y ′|.
Suppose |X ′| = |Y ′|.
Let S′ = Z ] (Y \Y ′)]X ′

|S′4Si| < |Sj4Si|. ⇒⇐
Therefore, |X ′| > |Y ′|

∀Y ′ ⊆ (Y \ {v}), |NH(Y ′) \ {w}| ≥ |Y ′| and by Hall’s theorem, H \ {w, v} has a
perfect matching.
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Handling attack on uv by moving to Sj

Claim 1: For any min VC Si of G, an attack on any edge uv with u ∈ Si and v /∈ Si can be
defended by moving to a min VC Sj such that v ∈ Sj and |Si4Sj | is minimum.

1 u ∈ X : (Using perfect matching M in H \ {u, v})

u v

2 u /∈ X : (Using perfect matching M in H \ {w, v})

Connectivity of Si is crucial here

w : nearest vertex of u in X
P : shortest path from u to w in Si

P
w

u

v
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Deciding evc(G) when all min V Cs are connected

Theorem

Let G(V,E) be a graph for which every min VC is connected. If for every vertex v ∈ V ,
there exists a min VC Sv of G such that v ∈ Sv, then evc(G) = mvc(G). Otherwise,
evc(G) = mvc(G) + 1.

The second case follows from evc(G) ≤ cvc(G) + 1

Consequence:

If all min VCs of G are connected, then deciding evc(G) ≤ k is in NP.

For biconnected chordal graphs and biconnected internally triangulated graphs,
all min VCs are connected and hence deciding evc(G) ≤ k is in NP .

If all min VCs of G are connected and the necessary condition can be checked in
polynomial time, then evc(G) can be computed in polynomial time.

For biconnected chordal graphs, evc(G) can be computed in polynomial time.
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Generalization of the characterization

Necessary condition

Let G(V,E) be any connected graph. Let X ⊆ V be the set of cut vertices of
G. If evc(G) = mvc(G), then for every vertex v ∈ V \ X, there exists a min
VC Sv of G such that (X ∪ {v}) ⊆ Sv.

proof idea:

All vertices of X have to be occupied in all configurations.

When an edge incident to v is attacked, (X ∪ {v}) has to be
occupied.

Sufficiency condition for some class of graphs

Let G(V,E) be a connected graph with |V | ≥ 2 and X ⊆ V be the set of cut
vertices of G. Suppose every min VC S of G with X ⊆ S is connected. If for
every vertex v ∈ V \X, there exists a min VC Sv of G such that (X∪{v}) ⊆ Sv,
then evc(G) = mvc(G) .
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Polynomial time algorithms

A class of graphs H is called hereditary, if deletion of vertices from any graph G
in H would always yield another graph in H.

Chordal graphs form a hereditary graph class.

Theorem

If H is a hereditary graph class such that:
for every graph G in H, mvc(G) can be computed in polynomial time and
for every biconnected graph H in H, all vertex covers of H are connected.

Then,
1 for any graph G in H, in polynomial time we can decide whether

evc(G) = mvc(G)
2 for any graph G in H with evc(G) = mvc(G), there is a polynomial time strategy

for guard movements using evc(G) guards.
3 for any biconnected graph G in H, in polynomial time we can compute evc(G).

Moreover, there is a polynomial time strategy for guard movements using evc(G)
guards.
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Polynomial time strategy for guard movements

Corollary

For any chordal graph G, we can decide in polynomial-time whether
evc(G) = mvc(G). Also, if mvc(G) = evc(G), there is a polynomial-time strategy for
guard movements using evc(G) guards.

Corollary

If G is a biconnected chordal graph, then we can determine evc(G) in
polynomial-time. Moreover, there is a polynomial-time strategy for guard movements
using evc(G) guards.
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Conclusion and Open problems

In certain graph classes, we gave a condition for characterizing graphs with
evc(G) = mvc(G).

The characterization does not hold for biconnected bipartite planar graphs.

Obtaining a characterization for bipartite graphs is an interesting open problem.

Identify other graph classes for which this characterization holds.
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Thank You !
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