On Graphs with Minimal Eternal Vertex Cover Number

Veena Prabhakaran

Department of Computer Science and Engineering, Indian Institute Of Technology, Palakkad

IIT PALAKKAD

Co-authors: Jasine Babu, L. Sunil Chandran, Mathew Francis, Deepak Rajendraprasad, J. Nandini Warrier

February 19, 2019

Veena	Prab	hakaran
-------	------	---------

・ロト ・日ト ・ヨト・

Outline

1 Introduction

2 Characterization for evc(G) = mvc(G) for some graph classes

3 Algorithms using the characterization

4 Conclusion and Open problems

æ

イロト イヨト イヨト イヨト

Algorithms

Eternal Vertex Cover (EVC) problem

- Introduced by Klostermeyer et al.¹ in 2009
- $\bullet\,$ Attacker-defender game in which k guards are placed on distinct vertices of G
- In each round, attacker chooses an edge to attack
- As a response to the attack, defender has to move guards such that
 - At least one guard must move across the attacked edge.
 - Others can either remain in the current position or move to an adjacent vertex.
 - At most one guard exists on any vertex.
- If an attack cannot be defended, the attacker wins.
- The defender wins if he can defend any sequence of infinite attacks.
- Eternal vertex cover number (evc) of a graph G: The minimum number k such that the defender has a winning strategy with k guards on G.
- For any graph G, $mvc(G) \le evc(G)$
- Given a graph G and an integer k, checking if $evc(G) \le k$ is NP-hard²

¹William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin,2009

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

크

イロト イヨト イヨト イヨト

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

Configuration 1:

크

イロト イヨト イヨト イヨト

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

Configuration 1:

크

E

・ロト ・日ト・ ・ヨト

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

Configuration 1:

Configuration 2:

・ロト ・日ト ・ヨト

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

< < >> < <</>

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

< < >> < <</>

Eternal Vertex Cover Number (evc)-Some Examples

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

< < >> < <</>

Eternal Vertex Cover Number (evc)-Some Examples

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

Configuration 1:

Configuration 2:

< D > < B >

Eternal Vertex Cover Number (evc)-Some Examples

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

 v_{ℓ}

< D > < B >

Eternal Vertex Cover Number (evc)-Some Examples

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

• $mvc(P_4) = 2$ and $evc(P_4) = 3$

Configuration 1:

Configuration 2:

< □ > < 合 >

• $\operatorname{mvc}(P_4) = 2$ and $\operatorname{evc}(P_4) = 3$

Configuration 1:

Configuration 2:

Characterization

Algorithms

Contribution

- It is known³ that for any graph G, $mvc(G) \le evc(G) \le 2 mvc(G)$.
- Klostermeyer et al. gave a characterization of graphs with $\operatorname{evc}(G)=2\operatorname{mvc}(G)$
- Characterization of graphs with evc(G) = mvc(G) remains open.
- We achieve such a characterization for a subclass of graphs.
- This subclass include chordal graphs and internally triangulated planar graphs.

³William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009: $\wedge \equiv \rightarrow = - \circ \circ \circ \circ$

Characterization

Algorithms

Contribution

- It is known³ that for any graph G, $mvc(G) \le evc(G) \le 2 mvc(G)$.
- Klostermeyer et al. gave a characterization of graphs with $\operatorname{evc}(G)=2\operatorname{mvc}(G)$
- Characterization of graphs with evc(G) = mvc(G) remains open.
- We achieve such a characterization for a subclass of graphs.
- This subclass include chordal graphs and internally triangulated planar graphs.

Overview of the Approach

- A simple necessary condition for evc(G) = mvc(G) is proposed here.
- For many graph classes including chordal and internally triangulated planar graphs, the necessary condition is also shown to be sufficient.
- The characterization leads to the computation of evc(G) in polynomial time for some graph classes like biconnected chordal graphs.
- For some graphs including chordal graphs, if mvc(G) = evc(G), we have a polynomial time strategy for guard movements.

³William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009: > $\langle \Xi \rangle$ $\Xi \rangle = 0 \circ 0 \circ 0$

Characterization for evc(G) = mvc(G) for some graph classes

Necessary condition for any graph

If evc(G) = mvc(G), then for every vertex $v \in V(G)$, \exists a min VC of G containing v.

Proof:

- Suppose there are mvc guards and \exists a vertex v that does not belong to any min VC of G.
- $\bullet\,$ When an edge incident to v is attacked, v has to be occupied in the next configuration.
- Since there is no min VC containing v, attack cannot be handled.

イロト イポト イヨト イヨ

Characterization for evc(G) = mvc(G) for some graph classes

Necessary condition for any graph

If evc(G) = mvc(G), then for every vertex $v \in V(G)$, \exists a min VC of G containing v.

Proof:

- Suppose there are mvc guards and \exists a vertex v that does not belong to any min VC of G.
- $\bullet\,$ When an edge incident to v is attacked, v has to be occupied in the next configuration.
- Since there is no min VC containing v, attack cannot be handled.

Sufficiency condition for some graph classes

- $\bullet\,$ The necessary condition is also sufficient for graphs in which all min VCs are connected
- Biconnected chordal and biconnected internally triangulated graphs are some examples of such graphs.
- The characterization can be generalized for handling more graph classes.

(ロ) (日) (日) (日) (日)

How are connected vertex covers helpful?

• The connected vertex cover number, cvc(G), is the minimum cardinality of a connected vertex cover of G.

Lemma (Klostermeyer et al.)

Let G be a nontrivial, connected graph and D be a vertex cover of G such that G[D] is connected. Then, $evc(G) \leq cvc(G) + 1 \leq |D| + 1$.

Figure: Handling attack using connected VC⁴

⁴William F. Klostermeyer and C. M. Mynhardt. Australas. J. Combin, 2009: * 4 \equiv * = -9 < 0

Characterization for evc(G) = mvc(G) for graphs with all min VCs connected

Theorem

Let G(V, E) be a connected graph with $|V| \ge 2$ such that every min VC of G is connected. Then evc(G) = mvc(G) if and only if for every vertex $v \in V$, there exists a min VC of G containing v.

Proof:

 \implies Trivial from necessary condition

Claim 1: For any min VC S_i of G, an attack on any edge uv with $u \in S_i$ and $v \notin S_i$ can be defended by moving to a min VC S_j such that $v \in S_j$ and $|S_i \triangle S_j|$ is minimum.

- X and Y are independent sets
- $H = G[X \uplus Y]$ is a bipartite graph

• Since $|S_i| = |S_j|$, |X| = |Y|

Proof of Claim 1

Claim 1.1: $H = G[X \uplus Y]$ has a perfect matching. (Recall: $H = G[X \uplus Y]$ is a bipartite graph),

Proof strategy:

- Consider $Y' \subseteq Y$
- $X' = N_H(Y')$
- Suppose |X'| < |Y'|.
- Let $S' = Z \uplus (Y \setminus Y') \uplus X'$
- $\bullet \ |S'| < \operatorname{mvc}(G). \ \Rightarrow \Leftarrow$

・ロト ・日ト ・ヨト・

 $\forall Y' \subseteq Y, |N_H(Y')| \ge |Y'|$ and by Hall's theorem H has a perfect matching.

Characterization

Algorithms

Proof of Claim 1...

Claim 1.2: $\forall w \in X$, the bipartite graph $H \setminus \{w, v\}$ has a perfect matching. (Recall: S_j is a min VC such that $v \in S_j$ and $|S_i \triangle S_j|$ is minimum)

Proof strategy:

- $Y' \subseteq (Y \setminus \{v\})$
- $|X'| = |N_H(Y')|$
- By Claim 1.1, $|X'| \ge |Y'|$.
- Suppose |X'| = |Y'|.
- Let $S' = Z \uplus (Y \setminus Y') \uplus X'$
- $|S' \triangle S_i| < |S_j \triangle S_i|. \Rightarrow \Leftarrow$
- Therefore, |X'| > |Y'|

Image: A matrix

 $\forall Y' \subseteq (Y \setminus \{v\}), |N_H(Y') \setminus \{w\}| \ge |Y'|$ and by Hall's theorem, $H \setminus \{w, v\}$ has a perfect matching.

Veena Pr	abhakaran
----------	-----------

IIT Palakkad

February 19, 2019

10 / 17

Characterization

Algorithms

Conclusion

Handling attack on uv by moving to S_i

Claim 1: For any min VC S_i of G, an attack on any edge uv with $u \in S_i$ and $v \notin S_i$ can be defended by moving to a min VC S_j such that $v \in S_j$ and $|S_i \triangle S_j|$ is minimum.

 $\textcircled{0} \ u \in X : (\text{Using perfect matching } M \text{ in } H \setminus \{u, v\})$

2 $u \notin X$: (Using perfect matching M in $H \setminus \{w, v\}$)

Connectivity of S_i is crucial here

- w : nearest vertex of u in X
- P: shortest path from u to w in S_i

Deciding evc(G) when all min VCs are connected

Theore<u>m</u>

Let G(V, E) be a graph for which every min VC is connected. If for every vertex $v \in V$, there exists a min VC S_v of G such that $v \in S_v$, then evc(G) = mvc(G). Otherwise, evc(G) = mvc(G) + 1.

• The second case follows from $\text{evc}(G) \leq cvc(G) + 1$

<ロト <回ト < 回ト < 回ト

Deciding evc(G) when all min VCs are connected

Theorem

Let G(V, E) be a graph for which every min VC is connected. If for every vertex $v \in V$, there exists a min VC S_v of G such that $v \in S_v$, then evc(G) = mvc(G). Otherwise, evc(G) = mvc(G) + 1.

• The second case follows from $\operatorname{evc}(G) \leq \operatorname{cvc}(G) + 1$

Consequence:

- If all min VCs of G are connected, then deciding $\operatorname{evc}(G) \leq k$ is in NP.
- For biconnected chordal graphs and biconnected internally triangulated graphs, all min VCs are connected and hence deciding $\text{evc}(G) \leq k$ is in NP.
- If all min VCs of G are connected and the necessary condition can be checked in polynomial time, then evc(G) can be computed in polynomial time.
- $\bullet\,$ For biconnected chordal graphs, $\operatorname{evc}(G)$ can be computed in polynomial time.

12 / 17

・ロト ・日ト ・ヨト ・ヨト

Algorithms

Generalization of the characterization

Necessary condition

Let G(V, E) be any connected graph. Let $X \subseteq V$ be the set of cut vertices of G. If evc(G) = mvc(G), then for every vertex $v \in V \setminus X$, there exists a min VC S_v of G such that $(X \cup \{v\}) \subseteq S_v$.

proof idea:

- All vertices of X have to be occupied in all configurations.
- When an edge incident to v is attacked, $(X \cup \{v\})$ has to be occupied.

Sufficiency condition for some class of graphs

Let G(V, E) be a connected graph with $|V| \ge 2$ and $X \subseteq V$ be the set of cut vertices of G. Suppose every min VC S of G with $X \subseteq S$ is connected. If for every vertex $v \in V \setminus X$, there exists a min VC S_v of G such that $(X \cup \{v\}) \subseteq S_v$, then $\operatorname{evc}(G) = \operatorname{mvc}(G)$.

Characterization

Algorithms

Polynomial time algorithms

- A class of graphs \mathcal{H} is called hereditary, if deletion of vertices from any graph G in \mathcal{H} would always yield another graph in \mathcal{H} .
- Chordal graphs form a hereditary graph class.

Theorem

If \mathcal{H} is a hereditary graph class such that:

• for every graph G in \mathcal{H} , mvc(G) can be computed in polynomial time and

• for every biconnected graph H in H, all vertex covers of H are connected. Then,

- for any graph G in H, in polynomial time we can decide whether evc(G) = mvc(G)
- for any graph G in \mathcal{H} with evc(G) = mvc(G), there is a polynomial time strategy for guard movements using evc(G) guards.
- If or any biconnected graph G in H, in polynomial time we can compute evc(G). Moreover, there is a polynomial time strategy for guard movements using evc(G) guards.

イロト イヨト イヨト イヨト

Polynomial time strategy for guard movements

Corollary

For any chordal graph G, we can decide in polynomial-time whether evc(G) = mvc(G). Also, if mvc(G) = evc(G), there is a polynomial-time strategy for guard movements using evc(G) guards.

Corollary

If G is a biconnected chordal graph, then we can determine evc(G) in polynomial-time. Moreover, there is a polynomial-time strategy for guard movements using evc(G) guards.

Conclusion and Open problems

- In certain graph classes, we gave a condition for characterizing graphs with evc(G) = mvc(G).
- The characterization does not hold for biconnected bipartite planar graphs.

- Obtaining a characterization for bipartite graphs is an interesting open problem.
- Identify other graph classes for which this characterization holds.

(日) (종) (종) (종)

Thank You !

Veena Prabhakaran

IIT Palakkad

February 19, 2019 17 / 17

(日) (四) (문) (문) (문)