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Urmila Mahadev’s work on classical verification of quantum computations
Jaikumar Radhakrishnan

The paper shows how a classical verifier can interact with a single quantum prover and verify the result of
an e�cient quantum computation. The soundness of the protocol depends on an assumption that learning
from errors is hard even for e�cient quantummachines. We hope to introduce the main components of this
work as outlined in Mahadev’s FOCS 2018 paper[1].

References

[1] Urmila Mahadev. Classical verification of quantum computations. In Mikkel Thorup, editor, 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
259–267. IEEE Computer Society, 2018.

Locality Sensitive Orderings
Anil Maheshwari

I will discuss a recent result of Chan, Har-Peled, and Jones that appeared in 10th Innovations in Theoretical
Computer Science (ITCS 2019). The main result is that a certain number of linear orderings of a point set
can be computed with the following property: for any two points there is an ordering such that all the points
between these two specific points in the ordering are very close to one of these two points. This has inter-
esting applications in the computation of approximate nearest neighbors, geometric spanners, approximate
MST, etc. For details, see the article in ITCS 2019.

Algorithms with Uncertainty
Ravishankar Krishnaswamy

In this talk, we will survey the design and analysis of online algorithms for two fundamental problems,
namely matching and set cover.

An Online Metric Matching instance is given by a bipartite graph of n clients and servers, one or both
sides of which are revealed online. A client must be matched to one free server at the time a client is revealed
with the goal of minimizing the total cost of the final matching where the costs of (client, server) pairs are
assumed to obey the triangle inequality. We will review the rich history of this problem, and present our
results on the recourse version of the problem where the online algorithm is allowed to rematch some clients
online.

Similarly, the online set cover problem is where the elements arrive online, and we must include sets to
cover them irrevocably. We will again go over the classical results, and also present our results on the recourse
version of this problem where the algorithm is allowed to make a few changes to the sets it maintains over
time.

Based on joint works with: Anupam Gupta, Varun Gupta, Janardhan Kulkarni, Amit Kumar, Debmalya
Panigrahi, and Sai Sandeep.
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A panorama of scaling algorithms and applications
Ankit Garg

The story starts with Sinkhorn in 1964 who studied the problem of matrix scaling, where the goal is to
scale, i.e. multiply rows and columns by scalars, a non-negative matrix to a doubly stochastic one. Since
Sinkhorn’s work, matrix scaling has been extensively studied and has found applications in numerous areas
such as statistics, numerical linear algebra as well as theoretical computer science. Next Gurvits, in early
2000’s, generalized these ideas in several directions. One generalization was operator scaling which recently
resulted in a deterministic polynomial time algorithm for the non-commutative rational identity testing
problem (one other generalization was in the direction of real stable polynomials which resulted in a “proof
from the book” of the Van derWaerden conjecture). It turns out these scaling problems arise naturally in the
context of group actions and invariant theory which provide a further plethora of scaling problems. Some
additional problems that fall under this umbrella are the so called non-uniform scaling problems which
include Brascamp-Lieb inequalities, Horn’s problem, quantum marginal problem etc. Algorithms have been
recently designed for many of these scaling problems as well. We will catch a glimpse of this exciting story.

Spanning tree congestion problem
L. Sunil Chandran 1

Given a connected graphG = (V,E), let T be a spanning tree. For an edge e = (u, v) ∈ E, its detour with
respect to T is the unique path from u to v in T ; let DT(e, T ) denote the set of edges in this detour. The
stretch of ewith respect toT is |DT(e, T )|, the length of its detour. The dilation ofT ismaxe∈E |DT(e, T )|.
The edge-congestion of an edge e ∈ T is ec(e, T ) := |{f ∈ E : e ∈ DT(f, T )}|, i.e., the number of edges
in E whose detours contain e. The congestion of T is cong(T ) := maxe∈T ec(e, T ). The spanning tree
congestion (STC) of the graph G is STC(G) := minT cong(T ), where the minimization is among all
spanning trees ofG.

We note that there is an equivalent cut-based definition for edge-congestion, which we will use in our
proofs. For each tree-edge in e ∈ T , its removal from T results in two connected components; let Ue denote
one of the components. The edge-congestion of the edge e is ec(e, T ) := |E(Ue, V \ Ue)|.

The most general results regarding STC of general graphs is an O(n
√
n) upper bound by Löwenstein,

Rautenbach and Regen in 2009 [1], and a matching lower bound by Ostrovskii in 2004 [2]. Note that the
above upper bound is not interesting when the graph is sparse, since there is also a trivial upper bound of
m. In our paper we come up with a strong improvement to these bounds after 8 years:

Theorem: For a connected graph G with n vertices and m edges, its spanning tree congestion is at most
O(
√
mn). In terms of average degree davg = 2m/n, we can state this upper bound asO(n

√
davg). There

is a matching lower bound.

Though in the general case we do not have any polynomial time algorithm for the STC problem, we are
able to provide e�cient constant factor approximation algorithms for two important cases. In both cases we
prove that the spanning tree congestion is Θ(n) and provide e�cient polynomial time algorithms to find
spanning trees with congestionO(n).

• For random graphs G(n, p) with 1 ≥ p ≥ c logn
n for some small constant c > 1. It should be noted

that the STC problem is relevant only for connected graphs and since the threshold function for graph
connectivity is logn

n , we are providing the polynomial time algorithm for almost all of the relevant range
of values of p.
1Mypresentationwill be based on the recent work done in collaborationwith YunKuenCheung andDavis Issac, both researchers

from Max Planck Institute für Informatik, Saarbrücken, Germany.
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• The other important case where we can give a constant factor approximation algorithm is for the class of
graphs with minimum degree (1/2 + f)n for any fixed positive constant f .

As a crucial ingredient for the above results, we prove the following lemma:

Lemma 1. LetG be a k-connected graph withm edges. Then its spanning tree congestion isO(m/k).
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[1] Christian Löwenstein, Dieter Rautenbach, and Friedrich Regen. On spanning tree congestion. Discrete
Mathematics, 309(13):4653 – 4655, 2009.
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Classified Matchings with one sided preferences
Meghna Nasre∗

In this talk, we consider the problem of computing an optimal matching in a bipartite graph where elements
of one side of the bipartition specify preferences over the other side, and the other side can have capacities
and classifications. The input instance is a bipartite graph G=(A U P,E), where A is a set of applicants, P
is a set of posts, and each applicant ranks its neighbors in an order of preference, possibly involving ties.
Moreover, each vertex p in P has a quota denoting the maximum number of applicants that can be assigned
to p in an allocation of applicants to posts - referred to as a matching. A classification for a post p is a
collection of subsets of the neighbors of p. Each subset (class) has a quota denoting the maximum number of
applicants from the class that can be matched to p. The goal is to find a matching that is optimal amongst
all the feasible matchings, which are matchings that respect quotas of all the posts and classes.

We consider the well-studied notion of popularity and show that a popular amongst feasible matchings
(if one exists) can be computed e�ciently if the classifications satisfy a certain property. To solve the classi-
fied popular matchings problem, we present a framework that involves computing max-flows iteratively in
multiple flow networks. We use the fact that, in any flow network, w.r.t. any max-flow the vertices can be
decomposed into three disjoint sets and this decomposition is invariant of the flow. This simple fact turns
out to be surprisingly useful in the design of our combinatorial algorithm. Besides giving polynomial-time
algorithms for classified popular matching problem, our framework unifies prior algorithms from literature
on popular matchings without classifications, matching the respective time complexities
∗This is joint work with Prajakta Nimbhorkar (CMI, Chennai) and Nada Pulath (IIT Madras).

Group Steiner Problems on Low Treewidth Graphs
Syamantak Das

The Group Steiner Tree (GST) problem is a classical problem in network design optimization. In the Edge
(Node)-Weighted Group Steiner Tree (EW(NW)-GST) problem, we are given an undirected graph G =
(V,E) on n vertices with edge costs c : E → R≥0, a source vertex s and a collection of subsets of vertices,
called groups, S1, . . . , Sk ⊆ V . The goal is to find a minimum-cost tree H ⊆ G that connects s to some
vertex from each group Si, for all i = 1, 2, . . . , k. The goal is to find a minimum-cost node setX ⊆ V such
thatG[X] connects every group to the source.

When G is a tree, both EW-GST and NW-GST admit a polynomial-time O(log n log k) approxima-
tion algorithm due to the seminal result of [Garg et al. SODA’98 / J.Algorithm]. The matching hardness of
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log2−ε n is known even for tree instances of EW-GST and NW-GST [Halperin and Krauthgamer STOC’03].
In general graphs, all polynomial-time approximation algorithms reduce the problem to a tree instance us-
ing the metric-tree embedding, incurring a loss of O(log n) on the approximation factor [Bartal, FOCS’96;
Fakcharoenphol et al., FOCS’03 / JCSS]. This yields an approximation ratio ofO(log2 n log k) for EW-GST.
Using metric-tree embedding, this factor cannot be improved: The loss of Ω(log n) is necessary on some in-
put graphs (e.g. grids and expanders). There are alternative approaches that avoid metric-tree embedding,
e.g., the algorithm of [Chekuri and Pal, FOCS’05], which gives a tight approximation ratio, but none of
which achieves polylogarithmic approximation in polynomial-time. This state of the art shows a clear lack
of understanding of GST in general graphs beyond the metric-tree embedding technique. For NW-GST, for
which the metric-tree embedding does not apply, not even a polynomial-time polylogarithmic approxima-
tion algorithm is known.

In this talk, based on joint works with Parinya Chalermsook, Guy Even, Bundit Laekhanukit and Daniel
Vaz, I shall present a O(log n log k) approximation algorithms that run in time nO(tw(G)2) for both NW-
GST and EW-GST, where tw(G) denotes the treewidth of graphG. The key to both results is a di�erent type
of “tree-embedding” that produces a tree of much bigger size, but does not cause any loss on the approximation
factor. Our embedding is inspired by dynamic programming, a technique which is typically not applied to
group connectivity problems. We also show that this technique is applicable to Group Steiner problems that
require higher connectivity between the source and the groups.

Integer Multicommodity Flow in Series-Parallel Graphs
Nikhil Kumar

We consider the problem of routing multicommodity flows in series-parallel graphs. When each commodity
has an associated demand and the cut condition is met, flow can be routed fractionally with congestion 2
and integrally with congestion 5. It is conjectured that integral flow can be routed with congestion 2. In this
paper, we make some progress towards it. We show that if G is a parallel composition of paths and every
cut has capacity at least twice the demand across it, then all demands can be routed integrally. For a series-
parallel graph G if the set of demands has a certain ”levelled” property and every cut has capacity at least
thrice the demand across it, we can route flow integrally. Both these results require thatG+H (G is the sup-
ply andH the demand graph) be Eulerian. Note that above results are stronger than just congestion 2 routing.

Our algorithm is purely combinatorial, introduces new ideas on how to prove integral flow cut gaps and
doesn’t require any previous knowledge other than some basic matching theory (algorithm for congestion 5
uses the fact that fractional flow can be routed with congestion 2). The algorithm proceeds by first finding
a partial routing and then iteratively improves upon it. If we are not able to route all the flow, we show a
violated cut. The improvement step is non-trivial and key to our algorithm.

On Graphs with Minimal Eternal Vertex Cover Number
Veena Prabhakaran

The eternal vertex cover problem is a vertex reconfiguration problem in which each configuration is a vertex
cover. This variant of the classical vertex cover problem is modelled as an attacker-defender game where a
set of guards on the vertices have to be dynamically reconfigured from one vertex cover to another in every
round. The minimum number of guards required to protect a graph from an infinite sequence of attacks
is the eternal vertex cover number (evc) of the graph. For a given a graph G and an integer k, it is NP-
Hard to check whether evc(G) ≤ k . However, for any graph G,mvc(G) ≤ evc(G) ≤ 2mvc(G), where
mvc(G) is the minimum vertex cover number ofG. Here, we achieve a characterization for a class of graphs
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that includes chordal graphs and internally triangulated planar graphs for which evc(G) = mvc(G). For
some graph classes including biconnected chordal graphs, our characterization leads to a polynomial time
algorithm to precisely determine evc(G) and to determine a safe strategy of guard movement in each round
of the game with evc(G) guards.

Concentration bounds for randomized incremental construction
Sandeep Sen

By combining several interesting applications of random sampling in geometric algorithms like point loca-
tion, linear programming, segment intersections, binary space partitioning, Clarkson and Shor [DCG 1989]
developed a general framework of randomized incremental construction (RIC ). The basic idea is to add
objects in a random order and show that this approach yields e�cient/optimal bounds on expected running
time. Even quicksort can be viewed as a special case of this paradigm. However, unlike quicksort, for most
of these problems, sharper tail estimates on their running times are not known. Barring some promising
attempts in [MSW93,CMS92,Seidel91] the general question remains unresolved.

In this talk, we present a general technique to obtain tail estimates for RIC and and provide applications
to some fundamental problems like Delaunay triangulations and construction of Visibility maps of intersect-
ing line segments. The main result is derived from a new and careful application of Freedman’s [Fre75] in-
equality for Martingale concentration that overcomes the bottleneck of the better known Azuma-Hoe�ding
inequality. Further, we explore instances, where an RIC based algorithm may not have inverse polynomial
tail estimates. In particular, we show that the RIC time bounds for trapezoidal map can encounter a running
time ofΩ(n log n log log n)with probability exceeding 1√

n
. This rules out inverse polynomial concentration

bounds within a constant factor of the O(n log n) expected running time.

Local Search in geometric optimization
Rajiv Raman

Given a hypergraph H = (V,E), a support graph is a graph G = (V, F ) on the vertex set V , such that
the sub-graph induced by each hyperedge e ∈ E is connected. If the graph G is planar, then this is called
a planar support. We prove the existence of a planar support for a class of geometric hypergraphs, namely
intersection hypergraphs of non-piercing regions in the plane. These hypergraphs are defined as follows:
A region is a connected subset of the plane, whose boundary is defined by a set of disjoint, simple jordan
curves. Two regions A and B are said to be non-piercing if A \ B, and B \ A are both connected. Given
two collections of non-piercing regions: R,B, the intersection hypergraph is a hypergraph with vertex set
R, and hyperedges consisting of a set of regions in R intersecting each region b ∈ B. As a consequence,
we derive a unified PTAS for several covering and packing problems on these hypergraphs. The proof also
yields a polynomial time algorithm to construct such hypergraphs.

Distance-d Independent Set Problem on Unit Disk Graphs
Gautam K. Das

In this talk, we study the maximum distance-d independent set problem, a variant of the maximum inde-
pendent set problem, on unit disk graphs. We first show that the problem is NP-hard. Next, we propose a
polynomial-time constant-factor approximation algorithm and a PTAS for the problem.
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Approximation Schemes for Geometric Coverage Problems
Minati De

Mustafa and Ray [?] showed that a wide class of geometric set cover (SC) problems admit a PTAS via local
search – this is one of themost general approaches known for such problems. Their result applies if a naturally
defined “exchange graph” for two feasible solutions is planar and is based on subdividing this graph via a
planar separator theorem due to Frederickson [?]. Obtaining similar results for the related maximum coverage
problem (MC) seems non-trivial due to the hard cardinality constraint.

In this talk, we provide a way to address the above-mentioned issue. First, we propose a color-balanced
version of the planar separator theorem. The resulting subdivision approximates locally in each part the
global distribution of the colors. Second, we show how this roughly balanced subdivision can be employed
in a more careful analysis to strictly obey the hard cardinality constraint. More specifically, we obtain a
PTAS for any “planarizable” instance of MC and thus essentially for all cases where the corresponding SC
instance can be tackled via the approach of Mustafa and Ray.

This is based on a joint work with Steven Chaplick, Alexander Ravsky, and Joachim Spoerhase.
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Clustering and stability
Amit Deshpande

The k-means clustering problem is NP-hard but often solved e�ciently by simple heuristics in practice. An
implicit assumption behind optimizing any clustering objective is that the optimal solution would recover
the underlying ground-truth clusters. In most real-world datasets, the underlying ground-truth clusters are
unambiguous and stable under small input perturbations. As a consequence, the ground-truth clusters satisfy
center-proximity, i.e., every point is closer to the center of its own cluster than the center of any other cluster
by some multiplicative factor greater than 1. We study the Euclidean k-means objective only over α-center-
proximal solutions, for α > 1. We show that this problem remains NP-hard even when the optimal clusters
are balanced. We complement it with exact algorithms in time exponential in k and the center-proximity
parameter but linear in the number of points and the dimension. This talk is based on joint work with
Anand Louis and Apoorv Vikram Singh [1].
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D2-sampling and k-means clustering
Ragesh Jaiswal

The k-means/median problem is to find good representative points (called centers) for a given set of point
in Rd. The D2-sampling technique is to iteratively pick points (from among the given point set) where
the probability of picking a point as a centre in the ith iteration is proportional to the (squared) Euclidean
distance of the point from the closest previously chosen centres. In this talk we will discuss the e�ectiveness
of theD2-sampling technique in the context of k-means/median problem.

Ensuring your favorite player wins: Tournament rigging and bribery
Sushmita Gupta

A knockout tournament is a standard format of competition, ubiquitous in sports, elections and decision
making. Such a competition consists of several rounds. In each round, all players that have not yet been elim-
inated are paired up into matches. Losers are eliminated, and winners proceed to the next round, until only
one winner exists. Given that we can correctly predict the outcome of each potential match (modeled by a
digraph D), a seeding of the tournament deterministically determines its winner. The inherently competitive
nature of these competitions makes it very attractive for bettors.

There are two common types of manipulations, where the common goal is to decide if we can ensure
that our favorite player wins by (1) controlling how the various players are paired up via the seeding and/or
(2) bribing certain players to alter the outcome of some matches. In this talk we will see new results about
both these forms of manipulations and along the way discuss some structural properties and algorithmic
techniques.

FPT Algorithms for Corridor Guarding Problems
R Subashini

Given an orthogonal connected arrangement of line-segments, Minimum Corridor Guarding(MCG) prob-
lem asks for an optimal tree/closed walk such that, if a guard moves through the tree/closed walk, all the line-
segments are visited by the guard. This problem is referred to asCorridor-MST/Corridor-TSP (CMST/CTSP)
for the cases when the guarding walk is a tree/closed walk, respectively. The corresponding decision version
of MCG is shown to be NP-Complete[2]. The parameterized version of CMST/CTSP referred to as k-
CMST/k-CTSP, asks for an optimal tree/closed walk on at most k vertices, that visits all the line-segments.
Here, vertices correspond to the endpoints and intersection points of the input line-segments. We show that
k-CMST/k-CTSP is fixed-parameter tractable (FPT) with respect to the parameter k. Next, we propose a
variant of CTSP referred to as Minimum Link CTSP(MLC), in which the link-distance of the closed walk
has to be minimized. Here, link-distance refers to the number of links or connected line-segments with same
orientation in the walk. We prove that the decision version of MLC is NP-Complete, and show that the
parameterized version, namely b-MLC, is FPT with respect to the parameter b, where b corresponds to the
link-distance. We also consider another related problem, the MinimumCorridor Connection (MCC). Given
a rectilinear polygon partitioned into rectilinear components or rooms, MCC asks for a minimum length
tree along the edges of the partitions, such that every room is incident to at least one vertex of the tree. The
decision version of MCC is shown to be NP-Complete[1]. We prove the fixed parameter tractability of the
parameterized version of MCC, namely k-MCC with respect to the parameter k, where k is the number of
rooms.
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A constant factor approximation for asymmetric TSP
Naveen Garg

I will present the paper by Svensson, Tarnawski and Vegh [1] which settles a long standing conjecture by
providing a constant factor approximation for asymmetric TSP. It also establishes a constant upper bound
on the integrality gap of the natural asymmetric TSP LP.
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A 2-Approximation Algorithm for Weighted Feedback Vertex Set in Tourna-
ments
Geevarghese Philip

A tournament is a directed graph T such that every pair of vertices in T is connected by an arc. A feedback
vertex set is a set S of vertices in T such that deleting S from T gives a directed graph with no directed cycles.
We consider the Feedback Vertex Set problem in tournaments. Here the input consists of a tournament
T and a weight function w which assigns integer weights to vertices of T. The task is to find a feedback
vertex set S in T with the minimum total weight. We give the first polynomial-time factor-2 approximation
algorithm for this problem. Assuming the Unique Games conjecture, this is the best possible approximation
ratio achievable in polynomial time.

This is joint work with Daniel Lokshtanov, Pranabendu Misra, Joydeep Mukherjee, Fahad Panolan, and
Saket Saurabh.

Chamberlin-Courant on Restricted Domains
Neeldhara Misra

This talk will be a general introduction to popular choices of restricted domains used in the context of voting,
such as single-peaked and single-crossing domains. As a case in point, we will consider the Chamberlin-
Courant multiwinner rule, for which the problem of winner determination is well-known to be NP-hard on
general profiles. We will see how the structure of single-peaked and single-crossing profiles can be exploited
to obtain e�cient algorithms for this problem. We will also see how these can be extended to profiles that
are "close to" being structured for certain simple notions of distances from a domain. Finally, we will explore
issues of manipulative behavior and robustness of voting rules, also in the context of restricted domains.
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Recent Trends in Computational Social Choice
Palash Dey

In this talk, we will survey about some of the exciting new research directions in Computational Social
Choice. This will include preference elicitation, sampling based election prediction, and various campaign
related problems. We will also discuss interesting trending concepts like liquid democracy, participatory
budgeting, fairness in voting, distortion of voting rules, etc.

Succinct Data Structures and FM index
Venkatesh Raman

In the area of succinct data structures, one is interested in representing the given data structure using infor-
mation theoretically optimal (plus some lower order term) bits of space and still not compromise on the time
taken to support queries and updates.

After a brief overview of succinct data structures for

• maintaining a bit vector to support rank and select queries,

• maintaining a binary tree to support left child, right child and parent queries

• maintaining a subset of a finite universe to support membership and select (find the i-th smallest
element) queries

we will describe a practical success story of succinct data structures: Burrows-Wheeler Transform along with
an (FM) index, on which e�cient string matching queries are supported.

Matroid Secretary Problem
Sourav chakraborty

The classical secretary problem is the following: there are n candidates for a secretarial post. Only one of
them has to be selected for the post. All the candidates are interviewed sequentially in a random order. After
each interview a score is given to the candidate just interviewed. The goal is to select the candidate with a
maximum score. But there is a catch. As soon as a candidate is interviewed, the decision whether to hire or
not, has to be taken before the next candidate arrives. If that candidate is hired then the interview process
stops. If the candidate is not hired then the next candidate is interviewed, and the candidate that was not
hired cannot be hired in the future. Because of this catch, the best that can be done, is to maximize the
probability of picking the best candidate.

TheMatroid Secretary Problem, introduced by Babaio� et al. (2007) [1], is a generalization of theClassical
Secretary Problem. In this problem, elements from a matroid are presented to an on-line algorithm in a
random order. Each element has a weight associated with it, which is revealed to the algorithm along with
the element. After each element is revealed the algorithm must make an irrevocable decision on whether or
not to select it. The goal is to pick an independent set with the sum of the weights of the selected elements
as large as possible. Babaio et al gave an algorithm for the Matroid Secretary Problem with a competitive
ratio of O(log d), where d is the rank of the matroid. It has been conjectured that a constant competitive
ratio is achievable for this problem.

In 2012, in a joint work with Oded Lachish [2], we give an algorithm that has a competitive ratio of
O(
√
logd). In 2014, the idea in our previous paper was improved by Lachish to obtain a competitive ratio of

O(loglog d) [4]. In 2015 Moran et al [3] used di�erent tools to obtain the same bound of O(loglog d). While
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the believe is that the best competitive ratio is constant for this problem no progress has been made since
2015. We will look at the di�erent approaches and see how one can expect to get an improved algorithm.
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Dynamic and Fault-Tolerant Algorithms
Manoj Gupta

In this talk, we will give an introduction to Dynamic and Fault Tolerant Graph Algorithms. For Dynamic
Graph Algorithm, we will describe a simple algorithm for approximate maximummatching [1]. For the fault
tolerant graph algorithm, we will describe a simple result of single fault tolerant exact distance oracle [2].
This will also help the audience in grasping two talks that will follow (“Dynamic Algorithms for Matching"
by N.S. Narayanaswamy and “Fault Tolerant Reachability" by Keerti Chaudhary)
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Fully dynamic maximal matching without 3 length augmenting paths in O(
√
n)

update time
N.S. Narayanaswamy

We present a randomized algorithm to maintain a maximal matching without 3 length augmenting paths in
the fully dynamic setting. Consequently, we maintain a 3/2 approximate maximum cardinality matching.
Our algorithm takes expected amortized O(

√
n) time where n is the number of vertices in the graph when
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the update sequence is generated by an oblivious adversary. Over any sequence of t edge insertions and dele-
tions presented by an oblivious adversary, the total update time of our algorithm is O(t

√
n) in expectation

andO(t
√
n+n log n) with high probability. To the best of our knowledge, our algorithm is the first one to

maintain an approximate matching in which all augmenting paths are of length at least 5 in o(
√
m) update

time. We achieve our results by extending the simple algorithm of Baswana, Gupta, and Sen to maintain a
maximal matching in a fully dynamic setting. The relevant papers are at [1, 2].
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Fault-Tolerant Algorithm for Single Source Reachability
Keerti Choudhary

In this talk, we look at the problem of single-source-reachability (SSR) in presence of failures of vertices and
edges. In the static setting, SSR can be solved inO(m+n) time, for any directed graphG on n vertices and
m edges. To model the scenario of a faulty network, we associate a parameter k with the network such that
there are at most k vertices (or edges) that are failed at any stage in the network. The goal is to preprocess
the graph G in polynomial time, and compute a compact data structure, that, given any set F of at most k
vertices (or edges), e�ciently computes vertices reachable from source in the graph G \ F . We show that
for any set F of size k, our algorithm takes O(2kn) time. Previously the only known construction was for
single fault. Our data structure can also be extended to obtain a fault tolerant algorithm for computing SSCs
(strongly connected components) after k failures.

ParameterizedAlgorithms for Longest paths and cyclesAbove SomeNatural Lower
Bounds
Saket Saurabh

Recall that the Longest Path problem asks, given an undirected vertex graphG and an integer k, whetherG
has a path with at least k vertices. Similarly, the Longest Cycle problem asks about a cycle with at least k
vertices. We study these problems from the perspective of an “above guarantee” parameterization. In this talk
we will see some natural above guarantee parameterizations for Longest Path and Cycle and newly designed
parameterized algorithms for it.

FPT algorithms for problems with conflict-free constraints
Roohani Sharma

Consider a class of Vertex Subset Problems where one is given as input a graph G and an integer k
(together with more input in some cases), and the goal is to find a set of k vertices, S, such that G − S
has some desired property. A few examples of Vertex Subset Problems are Vertex Cover, Feedback
Vertex Set, Odd Cycle Transversal, Multicut etc. Additionally, consider the class of Conflict-free
versions of these problems, where additionally, the vertex set S is also required to induce an independent set
inG. We call these the Conflict-free Vertex Subset Problems.
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In this talk, we study some Conflict-free Vertex Subset Problems with the aim of designing Fixed-
Parameter Tractable (FPT) algorithms for them. Typically, the design of algorithms for the Conflict-
free Vertex Subset Problems requires working on the problem from scratch in the sense that the algo-
rithms for the standard version of the problem (without the conflict-free condition) are not really extensible
to encompass the conflict-free constraint. In this talk, we will see a combinatorial tool that helps one to
design FPT algorithms for many Conflict-free Vertex Subset Problems in a more robust way, using
the FPT algorithms for their standard counterparts. Amongst a plethora of results that this combinatorial
tool implies, the most notable contribution is the design of an FPT algorithm for Conflict-free Multi-
cut (also called Stable Multicut in literature) and the design of single-exponential FPT algorithms for
Conflict-free s-t Separator (Stable s-t Separator) and Conflict-free Odd Cycle Transversal
(Stable Odd Cycle Transversal), all of which were posed as open problems by Marx et al. in TALG
2013. These results appeared at SODA 2018.

Parameterized Distributed Algorithms
Krithika Ramaswamy

In this talk, a recent study of parameterized graph optimization problems in the distributed setting will be
discussed. Specifically, parameterized upper and lower bounds for classical graph-theoretic problems will be
presented. This talk is based on the manuscript titled Parameterized Distributed Algorithms by Ran Ben-Basat,
Ken-ichi Kawarabayashi and Gregory Schwartzman [1].
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Simultaneous Consecutive Ones Submatrix and Editing Problems
Rani M. R.

A binary matrixM has the consecutive ones property (C1P ) for rows (resp. columns) if there is a permu-
tation of its columns (resp. rows) that arranges the ones consecutively in all the rows (resp. columns). If
M has the C1P for rows and the C1P for columns, thenM is said to have the simultaneous consecutive
ones property (SC1P ). Binary matrices having the SC1P plays an important role in theoretical as well as
practical applications.

We focus on the classical complexity and fixed parameter tractability of (a) Simultaneous Consecutive
Ones Submatrix (SC1S) and (b) Simultaneous ConsecutiveOnes Editing (SC1E) [3] problems here. SC1S
problems focus on deleting a minimum number of rows, columns and rows as well as columns to establish
the SC1P , whereas SC1E problems deal with flipping a minimum number of 0-entries, 1-entries and 0-
entries as well as 1-entries to obtain theSC1P . We show that the decision versions of theSC1S andSC1E
problems are NP-complete.

We consider the parameterized versions of the SC1S and SC1E problems with d, being the solution
size, as the parameter and are defined as follows. Given a binary matrix M and a positive integer d, d-
SC1S-R, d-SC1S-C and d-SC1S-RC problems decide whether there exists a set of rows, columns, and
rows as well as columns of size at most d, whose deletion results in a matrix with the SC1P . The d-SC1P -
0E, d-SC1P -1E and d-SC1P -01E problems decide whether there exists a set of 0-entries, 1-entries and
0-entries as well as 1-entries of size at most d , whose flipping results in a matrix with the SC1P .
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Our main results include:

1. The decision versions of SC1S and SC1E problems are NP-complete.

2. Using bounded search tree technique, certain reductions and related results from the literature [1, 2],
we show that d-SC1S-R, d-SC1S-C , d-SC1S-RC and d-SC1P -0E are fixed-parameter tractable
on binary matrices with run-times O∗(8d), O∗(8d), O∗(2O(dlogd)) and O∗(18d) respectively.

We also give improved FPT algorithms forSC1S andSC1E problems on certain restricted binarymatrices.
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