Indian Institute of Technology Jodhpur CS112 Discrete Mathematics

Maximum Marks 20
Time:1 Hour

1. Find the coefficient of x^{52} in $\left(x^{10}+x^{11}+\ldots+x^{25}\right)\left(x+x^{2}+\ldots+x^{15}\right)\left(x^{20}+x^{21}+\ldots+x^{45}\right)[5$ marks]
$\left(x^{10}+x^{11}+\ldots+x^{25}\right)\left(x+x^{2}+\ldots+x^{15}\right)\left(x^{20}+x^{21}+\ldots+x^{45}\right)$
$=x^{31} \cdot \frac{1-x^{16}}{1-x} \cdot \frac{1-x^{15}}{1-x} \cdot \frac{1-x^{26}}{1-x}$
$=x^{31} \cdot\left(1-x^{16}\right) \cdot\left(1-x^{15}\right) \cdot\left(1-x^{26}\right) \cdot(1-x)^{-3}$
$=x^{31} \cdot\left(1-x^{16}\right) \cdot\left(1-x^{15}\right) \cdot\left(1-x^{26}\right) \cdot\left(1+\binom{3}{1} x+\binom{4}{2} x^{2}+\cdots\right)$
Number of ways
$52=31+16+5$
$52=31+15+6$
$52=31+21$
$-\left({ }_{5}^{5+3-1}\right)-\binom{6+3-1}{6}+\left(\begin{array}{c}21+3-1\end{array}\right)=204$
2. Let G be a graph (not necessarily bipartite) on $2 n$ vertices, such that all degrees are at least n. Show that G has a perfect matching.
[10 marks]
Let e_{1}, \cdots, e_{k} be a matching of maximal size. Suppose $k<n$ and let u and v be two unmatched vertices. There are at least $2 n$ edges between $\{u, v\}$ and the $2 k$ matched vertices. Thus, there is an edge $e_{i}=a b$ such that there are at least 3 edges between $\{a, b\}$ and $\{u, v\}$. W.l.o.g. let those edges be $a u, b u, a v$. Then by replacing e_{i} in the matching by $a v$ and $b u$ we get a larger matching. Contradiction.
3. Show that a maximal matching is at least half the size of a maximum matching [5 marks]

Let M be a maximal matching and N a maximum matching. Suppose $|M|<|N| / 2$. Then the number of vertices in edges of M is strictly less than the number of edges in N, so there must be an edge $e \in N$ with neither endpoint in an edge of M. But then we could add e to M, contrary to it being maximal.
4. Take a standard deck of cards, and deal them out into 13 piles of 4 cards each. Show that it is always possible to select exactly 1 card from each pile, such that the 13 selected cards contain exactly one card of each rank (ace, $2,3, \cdots$, queen, king).
Consider a bipartite graph $G[X, Y]$, where X is the set of 14 piles and Y is the set of 14 possible ranks, and each pile is connected by an edge with the ranks that appear in it. Clearly, for any k piles, there are at least k ranks appearing in them. Thus, the marriage condition is satisfied, and therefore we have a perfect matching.
5. Suppose that we are given a sequence of $n m+1$ distinct real numbers. Prove that there is an increasing subsequence of length $n+1$ or a decreasing subsequence of length $m+1$. [7 marks]
Let the sequence be $a_{1}, \ldots, a_{n m}+1$. For each $k, 1 \leq k \leq n m+1$, let $f(k)$ be the length of the longest decreasing subsequence that starts with a_{k}, and let $g(k)$ be the length of the longest increasing subsequence that starts with a_{k}. Notice that $f(k), g(k) \geq 1$ always. If there is a k with either $f(k) \geq n+1$ or $g(k) \geq m+1$, we are done. If not, then for every k we have $1 \leq f(k) \leq n$ and $1 \leq g(k) \leq m$. Set up $n m$ pigeonholes, with each pigeonhole labeled by a different pair $(i, j), 1 \leq i \leq n, 1 \leq j \leq m$ (there are exactly nm such pairs). For each $k, 1 \leq k \leq n m+1$, put ak in pigeonhole (i, j) iff $f(k)=i$ and $g(k)=j$. There are nm +1 pigeonholes, so one pigeonhole, say hole (r, s), has at least two pigeons in it. In other words, there are two terms of the sequence, say a_{p} and a_{q} (where without loss of generality $p<q$), with $f(p)=f(q)=r$ and $g(p)=g(q)=s$. Suppose $a_{p} \geq a_{q}$. Then we can find a decreasing subsequence of length $\mathrm{r}+1$ starting from a_{p}, by starting a_{p}, a_{q}, and then proceeding with any decreasing subsequence of length r that starts with a_{q} (one such exists, since $f(q)=r$). But that says that $\mathrm{f}(\mathrm{p}) \mathrm{r}+1$, contradicting $\mathrm{f}(\mathrm{p})=\mathrm{r}$. On the other hand, suppose $a_{p} \leq a_{q}$. Then we can find an increasing subsequence of length $\mathrm{s}+1$ starting from a_{p}, by starting a_{p}, a_{q}, and then proceeding with any increasing subsequence of length s that starts with a_{q} (one such exists, since $g(q)=s$). But that says that $g(p) s+1$, contradicting $g(p)=s$. So, whether $a_{p} \geq a_{q}$ or $a_{p} \leq a_{q}$, we get a contradiction, and we CANNOT ever be in the case where there is NO k with either $f(k) n+1$ or $g(k) m+1$. This completes the proof.

