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1. Find the coefficient of 2°% in (x!® + 21! 4+ ... +22)(x + 22 + ... + 2P) (@0 + 22 +.. . +2Y)[5
marks]
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2. Let G be a graph (not necessarily bipartite) on 2n vertices, such that all degrees are at least
n. Show that G has a perfect matching. [10 marks]

Let eq, - - -, ex be a matching of maximal size. Suppose k < n and let v and v be two unmatched
vertices. There are at least 2n edges between {u,v} and the 2k matched vertices. Thus, there
is an edge e; = ab such that there are at least 3 edges between {a,b} and {u,v}. W.lo.g. let
those edges be au, bu,av. Then by replacing e; in the matching by av and bu we get a larger
matching. Contradiction.

3. Show that a maximal matching is at least half the size of a maximum matching [5 marks]

Let M be a maximal matching and N a maximum matching. Suppose |M| < |N|/2. Then the
number of vertices in edges of M is strictly less than the number of edges in IV, so there must
be an edge e € N with neither endpoint in an edge of M. But then we could add e to M,
contrary to it being maximal.

4. Take a standard deck of cards, and deal them out into 13 piles of 4 cards each. Show that it is
always possible to select exactly 1 card from each pile, such that the 13 selected cards contain
exactly one card of each rank (ace, 2,3, -, queen, king).

Consider a bipartite graph G[X, Y], where X is the set of 14 piles and Y is the set of 14 possible
ranks, and each pile is connected by an edge with the ranks that appear in it. Clearly, for any
k piles, there are at least k ranks appearing in them. Thus, the marriage condition is satisfied,
and therefore we have a perfect matching.



5. Suppose that we are given a sequence of nm + 1 distinct real numbers. Prove that there is an
increasing subsequence of length n + 1 or a decreasing subsequence of length m + 1. [7 marks]

Let the sequence be ai, ..., anm + 1. For each k,1 < k < nm + 1, let f(k) be the length of the
longest decreasing subsequence that starts with ag, and let g(k) be the length of the longest
increasing subsequence that starts with ag. Notice that f(k),g(k) > 1 always. If there is a
k with either f(k) > n+1 or g(k) > m + 1, we are done. If not, then for every k we have
1< f(k) <mnand 1 < g(k) < m. Set up nm pigeonholes, with each pigeonhole labeled by
a different pair (i,7),1 < i < n,1 < j < m (there are exactly nm such pairs). For each
k,1 < k < mnm+ 1, put ak in pigeonhole (¢,7) iff f(k) = i and g(k) = j. There are nm+ 1
pigeonholes, so one pigeonhole, say hole (r,s), has at least two pigeons in it. In other words,
there are two terms of the sequence, say a, and a, (where without loss of generality p < ¢),
with f(p) = f(¢) = r and g(p) = g(q) = s. Suppose a, > a4. Then we can find a decreasing
subsequence of length r + 1 starting from a,, by starting a,, a4, and then proceeding with any
decreasing subsequence of length r that starts with a, (one such exists, since f(q) = r). But
that says that f(p) r + 1, contradicting f(p) = r. On the other hand, suppose a, < a4. Then
we can find an increasing subsequence of length s + 1 starting from a,, by starting a,, ag,
and then proceeding with any increasing subsequence of length s that starts with a, (one such
exists, since g(q) = s). But that says that g(p) s + 1, contradicting g(p) = s. So, whether
ap > aq or ap < aq, we get a contradiction, and we CANNOT ever be in the case where there
is NO k with either f(k) n 4+ 1 or g(k) m + 1. This completes the proof.
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