Indian Institute of Technology Jodhpur CS112 Discrete Mathematics

Maximum Marks 20
Time:1 Hour

1. How many different ways can we choose 12 deserts if 5 different varieties are available? marks]
$C(5+12-1,12)=1820$
2. How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5$ where each x is a non negative integer such that $x_{1} \in[0,3], x_{2} \in[0,2]$ and $x_{3}, x_{4}, x_{5} \geq 0$
[10 marks]
Coefficient of z^{5} in the product:
$\left(1+z+z^{2}+z^{3}\right)\left(1+z+z^{2}\right)\left(1+z+z^{2}+\ldots\right)\left(1+z+z^{2}+\ldots\right)\left(1+z+z^{2}+\ldots\right)$
$=\frac{\left(1-z^{4}\right)\left(1-z^{3}\right)}{(1-z)^{5}}=\left(1-z^{3}-z^{4}+z^{7}\right) \cdot \sum_{n \geq 0}\binom{n+4}{4} z^{n}$
The coefficient of z^{5} is $\binom{5+4}{4}-\binom{2+4}{4}-\binom{1+4}{4}$
3. Given n letters and n addressed envelopes, in how many ways can the letters be placed in the envelopes so that no letter is in the correct envelope?
We want to count D_{n}, the number of derangements of $1, \ldots, n$. Let T_{i} be the set of permutations which leave i in its natural position. Then $D_{n}=\left|T_{1}^{c} \cap \ldots T_{n}^{c}\right|=\sum_{1 \leq i \leq n}(-1)^{k+1} \frac{n!}{i!}$
4. Solve $a_{n}=a_{n-1}+6 a_{n-2}, a_{0}=3, a_{1}=6$
$x^{n}=x^{n-1}+6 x^{n-2}$
$x^{2}-x-6=0$
$x=3,-2$
$a_{n}=3^{n} b_{1}+(-2)^{n} b_{2}$
$b_{1}=\frac{12}{5}, b_{2}=\frac{3}{5}$
$a_{n}=3^{n} \frac{12}{5}+(-2)^{n} \frac{3}{5}$
5. In a group of n people, one person may have 0 or more friends. Show that there are person who have an identical number of friends within the group.
The maximum number of friends one person in the group can have is $n-1$, and the minimum is 0 . If all of the members have at least one friend, then each individual can have somewhere between 1 to $n-1$ friends; as there are n individuals, by pigeonhole there must be at least two with the same number of friends. If one individual has no friends, then the remaining friends must have from 1 to $n-2$ friends for the remaining friends not to also have no friends. By pigeonhole again, this leaves at least 1 other person with 0 friends.
