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Applications of Edit Distance

File synchronization

NLP (e.g., auto spell-correction) Corection | mmssm) | Correction

Pattern recognition

Observed data A/c A/T T/T T/A A/A G/C A/A G/T A/A A/T A/T A/G A/G A/G C/C

Computation biology (DNA matching)  wnerieatom:

mother

father

Database systems o

marker

* Many more......



Computing Edit Distance

* For two strings basic Dynamic Programming solves in Quadratic time

* Many results on approximating the edit distance



Clustering

Question 1: Can we
partition them efficiently so
that “similar” strings are in
the same partition?




One Application: DNA-Storage System

Data to store:

(after pre-processing)
Access the data (using next-generation
sequencing)
Random edit

operations

Several “noisy” copies
of each small parts



One Application: DNA-Storage System

What we get What we need




DNA-Storage: Step 1 - Clustering

What we get

What we need
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Clustering

Question 1: Can we
partition them efficiently so
that “similar” strings are in
the same partition?




Clustering — What is known?

* Nothing much non-trivial is known, except
* One attack on clustering for noisy data [Rashtchian et al.’17]

* Objective: For DNA-storage application we need algorithm much
faster than O (n?) time, where n is the data size



DNA-Storage: Step 2 — How?

What we get What we need

—_—

______ R
| i /—
—




Trace Reconstruction

* Problem Statement: Reconstructing an unknown string from its noisy

observable copies (aka. traces)

* There is an unknown string x of length n

* We observe a set of “noisy” copies (traces) x4, Xo, ..., X,

* The objective is to recover x

/
1. Use as few samples as possible

2. Minimize the “error”

8. Design an efficient algorithm

~

/




Types of Noises

x =011000101 Noise Channel — x; = 0100110101

* Substitution Channel (Each symbol is flipped with probability p)
* Deletion Channel (Each symbol is deleted with probability p)

* Insertion-Deletion Channel (While scanning, keeps the next symbol
asitisw.p. 1 —p, deletes it w.p. p/2, and inserts a uniformly

randomly chosen symbol before the next symbol w.p. p/2)
| We considerthi%




Two Cases w.r.t. Unknown Strings

* Worst-case: Unknown string is arbitrary

* Average-case: Unknown string is an uniformly randomly chosen string

Roughly suffices for DNA storage
application




What is Known (for exact reconstruction)?

* Worst-case
« Upper Bound: 2°™"®) traces suffices [Chase '21]

* Lower Bound: (L(n3/?) traces necessary [Chase '21]

* Average-case

* Upper Bound: exp(0 (log'/3 n)) traces suffices (n**°M) running time)
[Holden, Pemantle, Peres, Zhai '20]

1/3

5/2

* Lower Bound: (1(log®/? n) traces necessary [Chase '21]



What about Approximation?

* Many applications (including DNA storage system) do not need the
exact reconstruction

* |t suffices to recover a string z that is “close” to the unknown string x

 Edit distance (ED) is a natural closeness measure

Can we do better?

® ° | Getting ~pn edit distance is
trivial (any input trace works)

Will see tomorrow




DNA-Storage: Step 2 — Trace Reconstruction

! Random edit operations
- / o




DNA-Storage: Step 2 — Finding Median

Proposed Heuristic: /
Find a representative

Minimizing the sum of distances




Finding a Median String

* Given a set of strings S = {x, x5, ..., x,,, } over alphabet Z, the
objective is to find a string y € X" (not necessarily from S) that
minimizes

0bj(S,y) = ) ED(x;,)

XiES

* Let y* be a string that minimizes 0bj (S, y)
* yv" is referred to as median



Finding a Median String Can we do better

with approximation?

* The problem is NP-hard P
[

A standard dynamic programming finds a median in time 0(2™n™™),
where each of m input strings is of length at most n [Sankoff '75]

* No O(n"™¢) time algorithm assuming Strong Exponential Time
Hypothesis (SETH) [Hoppenworth, Bentley, Gibney, Thankachan ’20]



Approximate Median

* Let OPT(S) = Obj(S,y"), where y* is a median string

* A string V is a c-approximate median iff Obj(S,y) < c - OPT(S)



What is the connection?

* Is there any connection between the approximate trace
reconstruction and the approximate median problem?

* A common heuristic for trace reconstruction (in practice) is to find a
median (or multi-sequence alignment)

* To think: Is there any definite connection between these two
problems? ‘o °

Will come back

tomorrow




Questions encountered so far

* How to do clustering efficiently? BNiRiaRas R 114

* How to perform approximate trace reconstruction efficiently?

* What is the connection between approximate trace reconstruction
and approximate median?

* How to find an approximate median efficiently?



Approximate Median

» Can we get a constant factor approximation in polytime?

e 2-approximation is easy (Why?)
* Output the best input (i.e., z € S with the minimum 0bj (S, z))
* Use triangle inequality (holds for any metric)




Approximate Median

» Can we get a constant factor approximation in polytime?

e 2-approximation is easy (Why?)
* Output the best input (i.e., z € S with the minimum 0bj (S, z))
* Use triangle inequality (holds for any metric)

* Question: What about PTAS? (Or even breaking below 27?)



What about Hamming?

e Easy (Why?)
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Output coordinate-wise majority (break ties arbitrarily)



Permutations — a special case?

* Suppose input strings are permutations over 1| (instead of arbitrary
n-length strings)

* Consider the edit distance between two permutations (as the min.
number of insertions, deletions) e.g.

X, = 785693214
e Known as Ulam metric x, = 275693814

ED(x1,x;) = 4



Permutations — a special case?[ Not Really J

* Given a set of permutations S = {x{, x,, ..., x,,, } over [n], the
objective is to find a permutation y (not necessarily from §) that
minimizes

0bj(S,y) = ) ED(x;,)

XiES



Why to study Ulam Median?

* First, it captures some of the inherent difficulties of the Edit metric

* Second, permutations can be viewed as rankings, and the Ulam
distance is an interesting dissimilarity measure



Rank Aggregation / (Ulam) Median
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Rank Aggregation / (Ulam) Median




Rank Aggregation / (Ulam) Median

Aggregated Rank:




Rank Aggregation / (Ulam) Median

Voter 1

A Good Final Selection

Voter 1:

b
£

Aggregated Rank:

Voter 2

A Good Final Selection

vorerx “
x _

Voter 3

Voter 4

A Good Final Selection

Jocy _

A Good Final Selection




Applications

* Social choice theory
* Sports

* Databases

* Statistics

* Internet

* Many more...



Rank Aggregation

e Ulam distance is one of the dissimilarity measures among
rankings/permutations

* Other popular measures include Kendall-tau / Kemeny, Spearman
footrule,...

Counts the number of inversions}




What do we know?

Upper Bound Lower Bound

Kendall-tau PTAS ((1 + €)-approximation in NP-hard [Dwork et al. ‘01]
polytime) [Mathieu, Schudy ‘07] (even for 4 inputs)

For 3 inputs, NP-hard or P?

Ulam (2 — €)-approximation in polytime NP-hard?
[C, Das, Krauthgamer ‘21] ara:

For 3 inputs, in P



Thank You!



