Indian Institute of Technology Jodhpur

CS121 Data Structures and Algorithms

1. You are given n coins denominations $c_{1}, c_{2}, \ldots c_{n}$ where $c>1$ is an integer. You would like to represent a nonnegative amount x using the smallest possible amount of coins. Develop a greedy algorithm for such task. Does it work when the denominations are not necessarily powers of the same number?
2. You are given a directed graph $G=V, E$ and a weight function $c: E \rightarrow \mathbb{R}^{+}$. Your task is to find the cheapest paths from 1 to any other vertex, where the cost of a path is:

- product of all edges costs
- maximum of all edges costs

3. Use dynamic programming to solve the following problem: given n strings $s_{1}, s_{2}, \ldots, s_{n}$, find the shortest string S such that all s_{i} occur in S. For example, if $n=3$ and $s_{1}=a a b, s_{2}=b b$, and $s_{3}=b a a$, one of the possible solutions is $S=a a b b a a$. Running time of your method can (and, probably, should) be exponential, but try to keep it around $O\left(2^{n} n\right)$.
4. Show how to implement the quicksort algorithm, so that it works in place (uses only $O(1)$ additional memory). You are not allowed to use recursion.
5. A sorting algorithm is stable if it does not change the relative order of equal elements. Which of the known (to you) sorting algorithms are stable?
