+91-674-249-4082

Submitted by amittr on 2 November, 2017 - 22:07

Date/Time:

Monday, November 20, 2017 - 15:30

Venue:

Seminar hall

Speaker:

Atibur Rahaman

Affiliation:

NISER

Title:

Partial dual construction for C*-Quantum groups

Given a Hopf algebra H in a braided category \mathcal{C} and a projection H\longrightarrow A to a Hopf subalgebra, one can construct a Hopf algebra r_{A}(H), called the partial dualization of H , with a projection to Hopf algebra dual to A. A non-degenerate Hopf pairing \omega :A\otimes B \longrightarrow 1 induces a braided equivalence between the Yetter-Drinfeld modules over a Hopf algebra and its partial dualization. In this seminar, we shall discuss this procedure in the general setting of C*-Quantum groups.

Reference:

1. Alexander Barvels, Simon Lentner, Christoph Schweigert, Partially dualized Hopf algebras have equivalent Yetter–Drinfel’d modules, Journal of Algebra 430 (2015) 303–342

2. Ralf Meyer, Sutanu Roy, Stanislaw Lech Woronowicz, Quantum group-twisted tensor products of C*-algebras II, J. Noncommut. Geom., 10 (2016), no. 3, 859-888.

**School of Mathematical Sciences**

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme

Design by WeebPal.

Design by WeebPal.