+91-674-249-4082

Submitted by sde on 11 April, 2016 - 09:31

Date/Time:

Tuesday, April 19, 2016 - 03:30 to 04:30

Venue:

SMS conference room

Speaker:

Shilpa Gondhali

Affiliation:

University of Haifa

Title:

Topology of quotients of the complex Stiefel manifold

Given a differentiable manifold $M$, understanding 'topology of $M$' means solving the Vector Field Problem on $M$, analyzing $K$ rings of $M$, immersion problem, etc. It is considered as a first step while analyzing the space completely. We will begin by explaining terms and an overview of the concept of topology of a manifold. We will consider actions of a finite cyclic group of order $m$ and the circle on the complex Stiefel manifold. Manifolds obtained as orbit spaces of these actions are called $m$-projective Stiefel manifold and right generalized complex projective Stiefel manifold respectively. We will discuss topology of these manifolds. (This is part of joint work with P. Sankaran and B. Subhash.)

**School of Mathematical Sciences**

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme

Design by WeebPal.

Design by WeebPal.