Skip to main content
  • Skip to main content
  • Site Map
  • Log in
  • T
  • T
-A A +A
Home
School of Mathematical Sciences
राष्ट्रीय विज्ञान शिक्षा एवंअनुसंधान संस्थान
National Institute of Science Education and Research

NISER

  • Home
    • About SMS
  • People
    • Faculty
    • Staff
    • Students
      • Int. M.Sc.
      • Int.MSc-PhD
      • Ph.D.
    • Postdoc
    • Visitors
    • Alumni
      • Integrated M.Sc
      • PhD
      • Faculty
  • Research
    • Research Areas
    • Publications
  • Curriculum
    • Course Directory
      • UG Core Courses
      • UG Elective Courses
      • PG Core Courses
  • Activity
    • Upcoming
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach Program
    • Past
      • Seminar/Colloquium
      • Conference/Sympos/Workshop
      • Meeting
      • Outreach
    • MathematiX Club
      • SUMS
  • Blogs
  • Committees
  • Gallery
  • Contact

Breadcrumb

  1. Home
  2. Anil Kumar Karn

Anil Kumar Karn

By anilkarn on Tue, 15/07/2014 - 11:26
Designation
Associate Professor
Joining Date
02/08/2011
Expiry of Tenure
31/01/2030
Research Area
Functional Analysis
Education
  • Doctor of Philosophy : University of Delhi, Delhi, India in 1998.
  • Master Degree : University of Delhi, Delhi, India in 1990.
Research Interest

Order structure in normed spaces and operator spaces (matricially normed spaces); 
Theory of operator ideals (Geometry of Banach Spaces).

Publications
  1.  Matrix norms in matrix ordered spaces, Anil K. Karn and R. Vasudevan; Glasnik Mathematici, 32(1)(1997) 87-97.
  2. Approximate matrix order unit spaces, Anil K. Karn and R. Vasudevan; Yokohama Math. J., 44(1997) 73-91.
  3. Matrix duality for matrix ordered spaces, Anil K. Karn and R. Vasudevan; Yokohama Math. J., 45(1998) 1-18.
  4. Characterizations of matricially Riesz normed spaces, Anil K. Karnand R. Vasudevan; Yokohama Math. J., 47(2000) 143-153.
  5. Compact operators whose adjoints factor through subspaces of lp , D. P. Sinha and Anil K. Karn; Studia Mathematica, 150(1) (2002) 17-33.
  6. Order units in a C*-algebra, Anil K. Karn; Pros. Indian Acad. Sci.(Math. Sci.), 113(1)(2003) 65-69.
  7. Adjoining an order unit to a matrix ordered space, Anil K. Karn;Positivity, 9(2) (2005) 207-223.
  8. Direct limit of matrix ordered spaces, J. V. Ramani, Anil K. Karn and Sunil Yadav; Glasnik Matematicki., 40(2) (2005) 303-312
  9. Direct limit of matricially Riesz normed spaces, J. V. Ramani, Anil K. Karn and Sunil Yadav; Commentationes Mathematicae Universitatis Carolinae, 47(1) (2006) 55-67.
  10. Corrigendum to “Adjoining an order unit to a matrix ordered space”, Anil K. Karn; Positivity, 11(2) (2007) 369-374.
  11. Direct limit of matrix order unit spaces, J. V. Ramani, Anil K.Karn and Sunil Yadav; Colloquium Mathematicum, 113(2) (2008), 175-184.
  12. Compact operators which factor through subspaces of $\ell_p$ , D. P. Sinha and Anil K. Karn; Math. Nachr., 281(3) (2008), 412-423.
  13. A p- theory of ordered normed spaces, Anil K. karn; Positivity, 14(3), (2010), 441–458.
  14. Order embedding of a matrix ordered space, Anil K. Karn; Bulletin Aust. Math. Soc., 84(1) (2011), 10–18.
  15. Orthogonality in sequence spaces and its bearing on ordered Banach spaces, Anil K. Karn; Positivity, 18(2) (2014), 223-234.
  16. An operator summability in Banach spaces, Anil K. Karn and D. P. Sinha; Glassgow Math. J., 56(2) (2014), 427-437.
  17. Orthogonality in a C*-algebra, Anil K. Karn; Positivity, 20(3) (2016), 607- 620. (https://rdcu.be/6pJl)
  18. Compact factorization of operators with  λ-compact  adjoints, Antara Bhar and Anil Kumar Karn; Glassgow Math. J., 60(2018), no. 1, 123-134.
  19. Algebraic orthogonality and commuting projections in operator algebras, Anil Kumar Karn; Acta Sci. Math. (Szeged), 84(1-2) (2018), 323-353.
  20. $M$-ideals and split faces of the quasi state space of a  non-unital ordered Banach space, Anindya Ghatak and Anil Kumar Karn; Positivity, 23(2) (2019), 413-429. (https://rdcu.be/7RZx).
  21. Contractive linear preservers of absolutely compatible pairs between C$^*$-algebras, Nabin K. Jana, Anil K. Karn and Antonio M. Peralta; Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RCSM), 113(3) (2019) 2731-2741. (https://rdcu.be/bo9Ln)
  22. $CM$-ideals and $L^{1}$-matricial split faces, Anindya Ghatak and Anil K. Karn; Acta Sci. Math. (Szeged), 85(3-4) (2019), 659-679.
  23. Absolutely compatible pairs in a von Neumann algebra, N. K. Jana, A. K. Karn and A. M. Peralta, Electronic Journal of Linear Algebra, 35 (2019), 599-618.
  24. Quantization of $A_{0}(K)$-Spaces, Anindya Ghatak and Anil Kumar Karn; Operator and Matrices, 14(2) (2020), 381-399.
  25. Absolutely compatible pairs in a von Neumann algebra-II, Anil K.umar Karn; Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RCSM), 114(3), July (2020). Article 153, 7pages. (https://rdcu.be/b4Tw6)
  26. Isometries of Absolute order unit spaces, Anil Kumar Karn and Amit Kumar; Positivity, 24(5) (2020), 1263-1277.
  27. Partial isometries in an absolute order unit space, Anil Kumar Karn and Amit Kumar; Banach Journal of Mathematical Analysis, 15(1) (2021), 1-26. (https://rdcu.be/cbdDL)
  28. Orthogonality: an antidote to Kadison's anti-lattice theorem, Anil Kumar Karn; Positivity and its Applications, (Positivity X, 8-12 July 2019), Pretoria, South Africa, (2021), 217-227.
  29. $K_0$-group of absolute Matrix order unit spaces, Anil Kumar Karn and Amit Kumar; Karn, Adv. Oper. Theory, 40(2) (2021) 27 pages. (Published online on March 17, 2021), (https://rdcu.be/cgX4P).
  30. A generalization of spin factors, Anil Kumar Karn; Acta. Sci. Math. (Szeged)), 87 (2021), 551-569.
  31. Absolute compatibility and Poincare sphere, Anil Kumar Karn, Annals of Functional Analysis, Ann. Funct. Anal. 13, 39 (2022), 13 pages. (https://doi.org/10.1007/s43034-022-00186-5)
  32. Centre of a compact convex set, Anil Kumar Karn; Banach Journal of Mathematical Analysis, 16(4) (2022), Article 68, 19 pages. (https://doi.org/10.1007/s43037-022-00222-5)
Preprints
  1. Compactness and an approximation property related to an operator ideal, Anil K. Karn and D. P. Sinha; (Preprint). (https://arxiv.org/abs/1207.1947)
  2. Dual of a normed F-bimodule, Anil K. Karn; (Preprint).
     
Project/Thesis Guidance
  1. Anindya Ghatak, completed in 2019,
  2. Amit Kumar, completed in 2020.
  3. Arindam Mandal, ongoing.
Sponsored Projects
  1. SERB sponsered Mathematical Research Impact Centric Support (MATRICS) project entitled "Absolute matrix order unit spaces: an order theoretic generalization of C*-algebras" of Rs. 6,60,000 for three years starting from 2020. Project reference no. MTR/2020/000017.

Personal homepage

Useful links

  • DAE
  • DST
  • JSTOR
  • MathSciNet
  • NBHM
  • ProjectEuclid
  • ScienceDirect

Quick links at NISER

  • NISER HOME
  • NISER Mail
  • Library
  • Intranet
  • Phone Book
  • WEB Portal
  • Office orders

Recent blog posts

Noncommutative Geometry and its Applications (NCG@NISER2020)
Purna Chandra Das : A Prosaic Ode to his Exceptional Life
Best paper award at SENSORNETS 2017 for Deepak Kumar Dalai

Contact us

School of Mathematical Sciences

NISER, PO- Bhimpur-Padanpur, Via- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

© 2023 School of Mathematical Sciences, NISER, All Rights Reserved.