MA607- Complex Analysis

Course No: 

Review of basic Complex Analysis: Cauchy-Riemann equations, Cauchy's theoremand estimates, power series expansions, maximum modulus principle, Classication ofsingularities and calculus of residues; Normal families, Arzela-Ascoli theorem, Riemann mappingtheorem; Weierstrass factorization theorem, Runges theorem, Mittag-Leers theorem;Hadamard factorization theorem, Analytic Continuation, Gamma and Zeta functions

Reference Books: 
  1. L. V. Ahlfors, Complex Analysis, Tata McGraw-Hill, 2013.
  2. J. B. Conway, \Functions of one complex variable", Second edition. Graduate Texts in Mathematics, 11. Springer-Verlag, New York-Berlin, 1978.
  3. R. Narasimhan and Y. Nievergelt, \Complex analysis in one variable", Second edition. Birkhuser Boston,Inc., Boston, MA, 2001.
  4. W. Rudin, Real and Complex Analysis, Tata McGraw-Hill, 2013.
  5. Wolfgang Fischer, Ingo Lieb, A Course in Complex Analysis: From Basic Results to Advanced Topics,Springer, 2012
  6. Eberhard Freitag, Rolf Busam, Complex Analysis, Springer, 2005
  7. Stein and Shakarchi, Complex Analysis, Princeton University Press, 2003
  8. Gamelin, Complex Analysis, Springer, 2000

Contact us

School of Mathematical Sciences

NISERPO- Bhimpur-PadanpurVia- Jatni, District- Khurda, Odisha, India, PIN- 752050

Tel: +91-674-249-4081

Corporate Site - This is a contributing Drupal Theme
Design by WeebPal.