On the Fourier Expansions of Jacobi Forms of Half-Integral Weight

Brundaban Sahu

(joint work with B. Ramakrishnan)

Harish-Chandra Research Institute, Allahabad

1

Notations and Definitions

Let k, N be a positive integers χ be a Dirichlet character modulo 4N. Let \mathcal{H} denote the complex upper half-plane. For a complex number z,

 $\sqrt{z} = |z|^{1/2} e^{\frac{i}{2} \arg z}$, with $-\pi < \arg z \le \pi$. $z^{k/2} = (\sqrt{z})^k$ for any $k \in \mathbb{Z}$. For $z \in \mathbb{C}$ and $a, b \in \mathbb{Z}$, we put $e^a_b(z) = e^{2\pi i a z/b}$. A Jacobi form $\phi(\tau, z)$ of weight k + 1/2 and index m for the group $\Gamma_0(4N)$, with character χ , is a holomorphic function $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ satisfying the following conditions. (i)

$$\phi\Big|_{k,m}\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},(\lambda,\mu)\right)=\chi(d)\phi(\tau,z),$$

where

$$\phi\Big|_{k,m}\left(\begin{pmatrix}a & b\\c & d\end{pmatrix}, (\lambda, \mu)\right) = \left(\frac{c}{d}\right)\epsilon_d^{2k+1}(c\tau+d)^{-k-1/2}$$

$$\cdot e^{m} \left(\frac{-c(z+\lambda\tau+\mu)^{2}}{c\tau+d} + \lambda^{2}\tau + 2\lambda z + \lambda\mu \right)$$

$$\cdot \phi\left(\frac{a\tau+b}{c\tau+d}, \frac{z+\lambda\tau+\mu}{c\tau+d}\right)$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N)$ and $\lambda, \mu \in \mathbb{Z}$, $\begin{pmatrix} c \\ d \end{pmatrix}$ denotes the Jacobi symbol and $\epsilon_d = 1$ or i according as d is 1 or 3 modulo 4.

(ii) For every
$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$
,

$$(c\tau+d)^{-k-1/2}e^m\left(\frac{-cz^2}{c\tau+d}\right)\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right)$$

has a Fourier development of the form

$$\sum_{\substack{n,r\in\mathbb{Q}\\r^2<4nm}}c_{\phi,\alpha}(n,r)\ e\left(n\tau+rz\right),$$

where the sum varies over rational numbers n, r with bounded denominators subject to the condition $r^2 \leq 4nm$.

Further, if $c_{\phi,\alpha}(n,r)$ satisfies the condition $c_{\phi,\alpha}(n,r) \neq 0$ implies $r^2 < 4nm$, then ϕ is called a *Jacobi cusp form*.

We denote by $J_{k+1/2,m}(4N,\chi)$, the space of Jacobi forms of weight k + 1/2, index m for $\Gamma_0(4N)$ with character χ .

Let $\phi(\tau, z)$ be a Jacobi form in $J_{k+1/2,m}(4N, \chi)$. Then its Fourier expansion at the infinite cusp is of the form

$$\phi(\tau, z) = \sum_{\substack{n, r \in \mathbb{Z} \\ r^2 \le 4nm}} c_{\phi}(n, r) e(n\tau + rz).$$
(1)

We have

Lemma 1. Let $\phi \in J_{k+1/2,m}(4N,\chi)$ having a Fourier expansion as in (1). Then $c_{\phi}(n,r)$ depends only on $4mn - r^2$ and on $r \pmod{2m}$, i.e $c_{\phi}(n,r) = c_{\phi}(n',r')$ whenever $r \equiv r' \pmod{2m}$ and $4mn - r^2 = 4mn' - r'^2$

The Lemma follows using similar arguments as in the case of integral weight. (See for instance Eichler-Zagier, Prog. in Math. **55**.) For $D \leq 0$, $\mu \pmod{2m}$, define $c_{\mu}(|D|)$ as follows:

$$c_{\mu}(|D|) := \begin{cases} c_{\phi}(\frac{r^2 - D}{4m}, r) & \text{if } D \equiv \mu^2 \pmod{4m}, \\ r \equiv \mu \pmod{2m}, \\ 0 & \text{otherwise.} \end{cases}$$
(2)

For $\mu \pmod{2m}$, let

$$h_{\mu}(\tau) := \sum_{|D|=0}^{\infty} c_{\mu}(|D|)e_{4m}(|D|\tau).$$
 (3)

For $\alpha \pmod{2m}$, the Jacobi theta function is given by

$$\vartheta_{\alpha}(\tau, z) = \sum_{\substack{r \in \mathbb{Z} \\ r \equiv \alpha \pmod{2m}}} e\left(\frac{r^2}{4m}\tau + rz\right).$$
(4)

By standard arguments (as in the case of integral weight), the Jacobi form $\phi \in J_{k+1/2,m}(4N,\chi)$ can be expressed as follows.

$$\phi(\tau, z) = \sum_{\mu \pmod{2m}} h_{\mu}(\tau) \vartheta_{\mu}(\tau, z), \quad (5)$$

where $(h_{\mu})_{\mu \pmod{2m}}$ is a vector valued modular form of weight k.

Some Transformation Properties of $h_{\mu}(\tau)$

Lemma 2. (Y. Tanigawa) Let $\phi(\tau, z) \in J_{k+1/2,m}(4N, \chi)$ and let h_{α} , $\alpha \pmod{2m}$ be a component of ϕ . Then the following formulas hold for $h_{\alpha}(\tau)$.

(i)
$$h_{-\alpha}(\tau) = \chi(-1)h_{\alpha}(\tau).$$

(*ii*)
$$h_{\alpha}(\tau+b)e_{4m}(\alpha^2 b) = h_{\alpha}(\tau), \quad \text{for any } b \in \mathbb{Z}$$

(*iii*)
$$(4N\tau+1)^k h_{\alpha}(\tau) = \sum_{\beta \pmod{2m}} \xi_{\alpha,\beta} h_{\beta} \left(\frac{\tau}{4N\tau+1}\right)$$

or equivalently

$$(-4N\tau+1)^{-k} h_{\alpha}\left(\frac{\tau}{-4N\tau+1}\right) = \sum_{\beta \pmod{2m}} \xi_{\alpha,\beta} h_{\beta}(\tau),$$

where

$$\xi_{\alpha,\beta} = \frac{1}{2m} \sum_{\gamma \pmod{2m}} e_{4m} (-4N\gamma^2 + 2\gamma(\beta - \alpha)).$$
(6)

Remark 1. The above lemma gives the relationship among the $h_{\alpha}(\tau)$. If one of the $h_{\alpha}(\tau)$ is zero, then there is a linear dependence equation among the $h_{\alpha}(\tau)$ which is given by the transformation rule (iii) of Lemma 2. It is natural to ask about the maximum number of components $h_{\alpha}(\tau)$ that can be zero in order that the given form ϕ is non-zero. Our theorems are motivated by this question considered by Skogman for the Jacobi forms of integral weight. Note that if χ is an odd character,

i.e., $\chi(-1) = -1$ then $h_0(\tau) = 0 = h_m(\tau)$, which follows from (i) of the above lemma.

Remark 2. Let $\phi(\tau, z) \in J_{k+1/2,1}(4N, \chi)$ be a Jacobi form of index 1. Using (i) of above Lemma, we see that when χ is an odd character, then $\phi(\tau, z) = 0$. Therefore, there is no non-zero Jacobi form of weight k + 1/2 and index 1 when the character χ is odd.

Remark 3. Let m = 2. In this case the Jacobi form $\phi(\tau, z) \in J_{k+1/2,2}(4N, \chi)$ will have four components $h_{\mu}(\tau)$, $\mu = 0, 1, 2, 3$. When χ is an odd character, then using (i) of above Lemma we get $h_0 = 0 = h_2$ and $h_1 = -h_3$. Therefore, $h_1(\tau)$ or $h_3(\tau)$ determines $\phi(\tau, z) \in J_{k+1/2,2}(4N, \chi)$ when χ is odd.

Now, let $\phi(\tau, z) \in J_{k+1/2,2}(4N, \chi)$, N odd and χ be an even character. In this case, $h_1 = h_3$. Also, it can be seen that $\xi_{0,1} = \xi_{0,3} = 0$ and $\xi_{0,2} = 1$. Using this in the transformation (iii) of above Lemma and substituting $\alpha = 0$ and assuming that $h_0 = 0$, we get

$$0 = \xi_{0,1}h_1(\tau) + \xi_{0,2}h_2(\tau) + \xi_{0,3}h_3(\tau)$$

= $2\xi_{0,1}h_1(\tau) + \xi_{0,2}h_2(\tau)$
= $h_2(\tau)$.

Therefore, $h_0 = 0$ implies that $h_2 = 0$. Already we have seen that h_1 determines h_3 . This shows that $h_0(\tau)$ and $h_1(\tau)$ determine $\phi(\tau, z)$ when m = 2, χ is even and N is odd. We prove the following theorems regarding the number of components h_{μ} that determine a Jacobi form.

Theorem 1. Let $\phi(\tau, z) \in J_{k+1/2,p}(4N, \chi)$, where p is an odd prime such that gcd(N, 2p) =1. For some $\alpha, \beta \pmod{2p}$ with $2 / |\alpha, 2|\beta$ and $gcd(\alpha\beta, p) = 1$, if we have $h_{\alpha}(\tau) = 0$ and $h_{\beta}(\tau) = 0$, then $\phi(\tau, z) = 0$.

Theorem 2. Let $\phi(\tau, z) \in J_{k+1/2,p}(4N, \chi)$, where p is an odd prime such that p|N. Then among the 2p components $h_{\mu}(\tau)$, λ_{χ} of them determine the Jacobi form $\phi(\tau, z)$, where

$$\lambda_{\chi} = \left\{ \begin{array}{ll} p-1 & \text{if } \chi \text{ is odd,} \\ p+1 & \text{if } \chi \text{ is even.} \end{array} \right.$$

Proof of Theorem 1.

Lemma 3. Let *m* be an odd natural number such that gcd(m, N) = 1 and let $\xi_{\alpha,\beta}$ be the Gauss sum as defined in (6) Then

$$\xi_{\alpha,\beta} = \begin{cases} \frac{1}{\sqrt{m}} \left(\frac{-N}{m}\right) \epsilon_m \ e_{4m} \left((4N)^{-1} (\beta - \alpha)^2\right) \\ & \text{if } 2|(\beta - \alpha), \\ 0 & \text{otherwise,} \end{cases}$$
(7)

where $(4N)^{-1}$ is an integer which is the inverse of 4N modulo m and $\epsilon_m = 1$ or i according as $m \equiv 1$ or 3 (mod 4).

We observe that

$$\xi_{\alpha,-\beta} = \xi_{-\alpha,\beta},$$

$$\xi_{\alpha,\beta} = \xi_{-\alpha,-\beta}.$$
(8)

Assume that for an odd α , $0 \le \alpha \le 2p$ with $gcd(\alpha, p) = 1$ we have $h_{\alpha}(\tau) = 0$. We will show that $h_{\mu}(\tau) = 0$ for all odd μ (mod 2p). By Lemma 2, (i) we have $h_{-\alpha}(\tau) = 0$. Substituting $h_{\alpha} = 0 = h_{-\alpha}$ in the equivalent form of Lemma.2 (iii), we get

$$\sum_{\beta} \xi_{\alpha,\beta} h_{\beta}(\tau) = 0,$$

$$\sum_{\beta} \xi_{-\alpha,\beta} h_{\beta}(\tau) = 0.$$
(9)

Observe that in the expansion of each of the $h_{\beta}(\tau)$, only $h_{\beta}(\tau)$ and $h_{-\beta}(\tau)$ have terms of the form $e\left(\frac{-\beta^2}{4p}\tau\right)e(n\tau)$ (since $x \equiv \mu^2 \pmod{4p}$) has only two solutions $\pm \mu \mod 2p$, if $gcd(\mu, p) = 1$). Using this in the above inversion formulas, we get

$$\xi_{\alpha,\beta}h_{\beta}(\tau) + \xi_{\alpha,-\beta}h_{-\beta}(\tau) = 0,$$

$$\xi_{-\alpha,\beta}h_{\beta}(\tau) + \xi_{-\alpha,-\beta}h_{-\beta}(\tau) = 0.$$
(10)

Hence,

$$h_{\beta}(\tau) = -\frac{\xi_{\alpha,-\beta}}{\xi_{\alpha,\beta}} h_{-\beta}(\tau) = -\frac{\xi_{-\alpha,-\beta}}{\xi_{-\alpha,\beta}} h_{-\beta}(\tau).$$
(11)

Claim 1. For $\beta \pmod{2p}$ with $gcd(\beta, 2p) = 1$, we have

 $\xi_{-\alpha,\beta}\xi_{\alpha,-\beta} \neq \xi_{\alpha,\beta}\xi_{-\alpha,-\beta}$ for $\alpha \equiv \beta \pmod{2}$. From this it follows that $h_{-\beta}(\tau) = 0 = h_{\beta}(\tau)$ when $gcd(\beta, 2p) = 1$.

Proof of Claim 1. Assume the contrary, i.e., assume that

$$\xi_{-\alpha,\beta}\xi_{\alpha,-\beta}=\xi_{\alpha,\beta}\xi_{-\alpha,-\beta}.$$

Then it follows that

$$\xi_{\alpha,\beta}^2 = \xi_{\alpha,-\beta}^2,$$

13

from which we should have

$$\xi_{\alpha,\beta} = \pm \xi_{\alpha,-\beta}.$$
 (12)

We shall now show that the last identity is not true when $gcd(\beta, 2p) = 1$.

By Lemma 3 we get

$$\xi_{\alpha,-\beta} = \frac{1}{\sqrt{p}} \left(\frac{-N}{p} \right) \epsilon_p \ e_{4p} \left(N'(\alpha + \beta)^2 \right),$$

if $2|(\alpha + \beta)$, where N' is an integer such that $(4N)N' \equiv 1 \pmod{p}$. Therefore, for (12) to be true we must have

$$e_p(-N'\alpha\beta) = \pm 1,$$

which implies that $p|N'\alpha\beta$, a contradiction. Similarly, if one starts with $h_{\alpha} = 0$ for even α , then $h_{\beta} = 0$ for all β even with $gcd(\beta, p) = 1$. It remains to show that $h_0(\tau) = 0 = h_p(\tau)$. If χ is an odd character then as remarked in Remark.1, we have $h_0(\tau) = 0 = h_p(\tau)$. So, let χ be an even character. If $h_{\alpha}(\tau) = 0$ for an even α , then applying the inversion formula as before and observing that $x^2 \equiv 0 \pmod{4p}$ has only one solution $x = 0 \mod{2p}$, we have $\xi_{\alpha,0}h_0(\tau) = 0$. Since $\xi_{\alpha,0} \neq 0$, it follows that $h_0(\tau) = 0$. Similarly, one can prove that $h_p(\tau) = 0$ by considering the square class $p^2 \mod{4p}$ which has only one solution $(= p) \mod{2p}$. This completes the proof of Theorem 1.

Proof of Theorem 2.

Here the index is p and p|N. In this case we have

$$\begin{aligned} \xi_{\alpha,\beta} &= \frac{1}{2p} \sum_{\substack{\gamma \pmod{2p} \\ \gamma \pmod{2p}}} e_{2p} \Big(\gamma(\beta - \alpha) \Big) \\ &= \begin{cases} 1 & \text{if } 2p | (\beta - \alpha), \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$
(13)

In other words, $\xi_{\alpha,\beta} \neq 0$ if and only if $\alpha \equiv \beta$ (mod 2p). Therefore property (iii) of Lemma 2. won't give any dependency relation among the $h_{\alpha}(\tau)$. Now let χ be an odd character. In this case, as observed before we have $h_0(\tau) =$ $0 = h_p(\tau)$. Also, by the same property (i) of Lemma 2, we have $h_{\alpha}(\tau) = -h_{-\alpha}(\tau)$. So, in the remaining 2p-2 components, if we assume that p-1 of them are zero, then $\phi(\tau, z) = 0$. This completes the first part. If χ is an even character, we cannot conclude that h_0 and h_p are zero. Therefore, combining with the property $h_{\alpha}(\tau) = h_{-\alpha}(\tau)$ we see that one needs p-1+2 = p+1 components h_{α} to determine the given Jacobi form ϕ .

Theorem 3. Let $\phi(\tau, z) \in J_{k+1/2,pq}(4N, \chi)$, where p,q are distinct odd primes. Then the components h_{α} and h_{β} with $2|\alpha, 2 \not| \beta$ and $gcd(\alpha\beta, pq) = 1$ determine the associated Jacobi form $\phi(\tau, z)$.

Theorem 4. Let $\phi(\tau, z) \in J_{k+1/2, p^2}(4N, \chi)$, where p is an odd prime such that gcd(p, N) =1. Then among the $2p^2$ components $h_{\mu}(\tau)$, the following components

 $\{h_a, h_b\}, 2|a, 2 \not| b, \ \gcd(ab, p) = 1 \ \text{and}$

$$\left\{h_{2ip}, h_{(2i+1)p}\right\}_{i=0}^{(p-1)/2}$$

when χ is even and

 $\{h_a, h_b\}, 2|a, 2 \not| b, \ \gcd(ab, p) = 1 \text{ and}$

$${h_{2(i+1)p}}_{i=0}^{(p-3)/2}, {h_{(2i-1)p}}_{i=1}^{(p-1)/2},$$

when χ is odd determine the Jacobi form $\phi(\tau, z)$. In other words, at most p+1 or p+3 (according as χ is odd or even) of the components h_{μ} will determine the Jacobi form $\phi(\tau, z)$. Reference: On the Fourier Expansions of Jacobi Forms of Half-Integral Weight, B. Ramakrishnan and Brundaban Sahu Int. J. Math. Math. Sci. Vol 2006

THANK YOU