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Introduction

Randomized Incremental Construction (RIC)

Starting from an empty set

Repeat:
1 Insert the next object
2 Update the partial construction (data-structures)

Total Time =
∑

i Time to insert the i-th object.
Ts(N) = Total time to insert a sequence s. (s is good if total time is less).

Expected total time = maxinput I E[Ts(I)]
(worst case for any input of size n).
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Introduction

Quicksort as R.I.C.

Gradual refinement of partition
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Introduction

Quicksort as R.I.C.

Conflict graph
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Introduction

Bounding the maximum sub-problem size
Π(n) : set of subproblems defined by n objects
σ: a subproblem is defined by D(σ) elements
l(σ) : size of the subproblem (unchosen elements in σ)

Example: Quicksort
Π(n) =

(n
2
)
pairs of points

A subproblem is defined by a pair of sample points
D(σ) end-points of σ

l(σ) : unsampled points in σ

not active

l( )=3 activenot chosen

Π0(n) special significance : l(σ) = 0
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Introduction

Bounding the maximum sub-problem

Claim :
Pr{ max

active σ
l(σ) ≥ c n

r log r} ≤ 1
2

R chosen by Bernoulli sampling p = r/n

p(σ, r) : conditional probability that none of the k (= l(σ))
elements are selected given D(σ) chosen
≤ (1− r/n)k

≤ e−c log r = 1/r c for k ≥ cn/r ln r
BAD σ
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Introduction

q(σ, r) : Prob. that D(σ) ⊂ R

Prob. that σ is active = p(σ, r)× Pr[D(σ) ⊂ R]

Prob. that some σ is active and BAD (l(σ) ≥ c(n ln r)/r) :

≤ 1
r c

∑
σ∈Π(n)

Pr[D(σ) ⊂ R] = 1
r c

∑
σ∈Π(n)

E [D(σ) ⊂ R]

= 1
r c E [ number sub-problems for which D(σ) ⊂ R]

(linearity of Expectation)

= rO(1) for D(σ) = O(1) ≤
≤ 1/2 for appropriate c
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Introduction

More general : Trapezoidal Map
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Introduction

Trapezoidal Map : Ranges

Sandeep Sen (IIT Delhi, India) Concentration bounds for RIC18 (Randomized Incremental Construction)Feb 8, 2019 12 / 35



Introduction

Randomized Incremental Construction
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Introduction

Objects (segments) and ranges (trapezoids)

A

B
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Introduction

A more general scenario

Objects Ranges
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Introduction

Modifications caused by insertion of an object

Objects Ranges
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Introduction

A general bound for RIC [Cl-Sh]
Total (amortised) cost = O(edges created in conflict graph)
Edges can be deleted at most once
General Step: R ← R ∪ s (both random subsets)
Expected work (#edges created in the conflict graph)=∑

σ∈Π0(R∪s)

l(σ) · Pr{σ ∈ Π0(R ∪ s)− Π0(R)}

From backward analysis this probability is the same as deleting a random element
from R ∪ s which is d(σ)

r+1 . Substituting∑
σ∈Π0(R∪s)

l(σ) · d(σ)
r + 1 = d(σ)

r + 1
∑

σ∈Π0(R∪s)

l(σ)

Sum bound ∑
σ∈Π0(R∪s)

l(σ) = n
r · E [Π0(R ∪ s)]
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Introduction

A general bound on Expected running time of RIC

= O(d(σ)
r · n

r E [Π0(R ∪ s)])

A common scenario E [Π0(R) = O(r).

Total expected cost of RIC =
r=n∑
r=1

O
(

d
r · n

)
= O(n log n) (also applicable to convex hulls)

OPEN PROBLEM
Tail estimates in the general case without independent repetitions
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Introduction

Sum of subproblem sizes

Def: c-order conflict
(

l(σ)
c

)
, for some c ≥ 0

Let Tc =
∑
σ∈Π0(R)

(
l(σ)

c

)
Remark For technical reasons it is not l(σ)c . T0 = |Π0(R)|. T1 = sum of
subproblems.

Claim E [Tc ] = O(
( n

r
)cE [Πc(R)])

For constant c, E [Πc (R) = O(E [Π0(R)] implying that average conflict size is very close
to n

r
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Introduction

Sum of subproblem sizes

Tc =
∑
σ∈Π(N)(R)

(
l(σ)

c

)
Iσ,R where Iσ,R = 1 if σ ∈ Π0(R).

E [Tc ] =
∑
σ∈Π(N)

(
l(σ)

c

)
pd(σ) · (1− p)l(σ) for l(σ) ≥ c.

=
∑
σ∈Π(N)

(
l(σ)

c

)
pd(σ)+c · (1− p)l(σ)−c ·

(
1−p

p

)c

≤
(
1−p

p

)c
· E [Πc(R)]

since Pr{σ ∈ Πc(R)} = Pr{d(σ) objects chosen and c out of l(σ) not chosen

≤
(
1
p

)c
· E [Πc(R)] where p = r

n .
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Introduction

Standard Tools
Running time is bounded by some probability distribution

Prob.
distr.

Running time T

Probabilistic Inequalities :

Markov Pr[X > kE [X ]] < 1/k
Chernoff Pr[X > A] ≤ GX (s) · s−A

Chebychev Pr[|X − E [X ]| > r ] ≤ σ2/r2

Notation :
∼
O (·) def= O(·) with prob. 1− 1

n Inv polynomial
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A Martingales based framework and Quicksort

A martingale framework

(Ω,U) : all permutations of n objects U uniform probability distribution.
Bi blocks of permutations, to the i-prefixes X̄ (i)

Example: Objects {1, 2, 3}.

B0 [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]
B1 [1, 2, 3], [1, 3, 2] , [2, 1, 3], [2, 3, 1] , [3, 1, 2], [3, 2, 1]
B2 [1, 2, 3], [1, 3, 2] . . .

Zi = E[Z |X̄ (i)]: random variable Z over the probability space (Ω,U)

Claim: Z1,Z2 . . . satisfies E[Zi |Z0,Z2 . . .Zi−1] = Zi−1 Doob’s martingale

Deviation from Expectation
Z0 : expected runnning time of ric and Zn: actual runnning time
Concentration bound : Pr[|Z0 − Zn| ≥ λ] < ???
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A Martingales based framework and Quicksort

A martingale inequality

Theorem [Freedman 75]
Let X1,X2 . . .Xn be a sequence of random variables and let Yk , a function of
X1 . . .Xk be a martingale sequence, i.e., E[Yk |X1 . . .Xk ] = Yk−1 such that
max1≤k≤n{|Yk − Yk−1|} ≤ Mn. Let

Wk =
k∑

j=1
E[(Yj − Yj−1)2|X1 . . .Xj−1] =

k∑
j=1

Var(Yj |X1 . . .Xj−1)

where Var is the variance using E[Yj ] = Yj−1. Then for all λ and
Wn ≤ ∆2, ∆2 > 0 ,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 + Mn · λ/3)

)
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A Martingales based framework and Quicksort

Martingale inequality

Extended Freedman inequality
Let Pr[max1≤k≤n{|Yk − Yk−1|} ≥ Mn,Wn ≥ ∆2] ≤ 1

f (n) , then,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 + Mn · λ/3)

)
+ O(1/f (n))

Azuma-Hoeffding

Pr[|Yn − Y0| ≥ t] ≤ exp
(
−t2∑n
i=1 M2

i

)
Mehlhorn-Sharir-Welzl [93] obtained a special kind of Martingale concentration
bound that was effective for some cases of line segment intersection RIC.
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A Martingales based framework and Quicksort

Application to quicksort

X

No change for X

X

Cost = 5   shared equally 

X

Ix
j =

{
1 if interval containing x changes in step j
0 otherwise.
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A Martingales based framework and Quicksort

Analysis

E[
∑

j
Ix
j ] =

∑
j

Pr[Ix
j = 1] =

∑
j

2
j = log n

Mn = 1 since maximum charge on X is 1 for any pivot.

Yj − Yj−1 = w(vj−1, vj) +

 n∑
k=j+1

E[I ′k ]

−
 n∑

k=j
E[Ik ]


= Ij − E [Ij ] assuming Ij , I ′j ’s have the same distribution

Ej [(Ij − E [Ij ])2] = Ej [I2j ]− E2
j [Ij ] ≤ Ej [I2j ]− 4

(n − j)2

≤ 2
n − j I2j also 0-1 indicator rv

n∑
j=1

Ej−1[(Yj − Yj−1)2] ≤
n∑

j=1

2
n − j ≤ 2 log n = Wn
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A Martingales based framework and Quicksort

Inverse polynomial bound for quicksort

Pr[|Yn − Y0| ≥ c log n] ≤ exp
(
− 4c2 log2 n
2(log n + c log n/3)

)
≤ 1

nc .

Since Ix
j are independent, one can apply Chernoff bounds directly to get

similar concentration bounds [Seidel89]

Use of Martingales can reduce the number of random bits significantly.

Azuma-Hoeffding

Pr[|Yn − Y0| ≥ t] ≤ exp
(
−t2∑n
i=1 M2

i

)
For Mi = 1, there is no meaningful bound for this setting.
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More complex settings

Incremental Delaunay triangulation

Total size is O(i) but the degree of a vertex can be large

Number of new ∆’s is 5 and can be as large as i but ..
the average degree of a planar graph is O(1).
Expected number of triangles that appear over the course of RIC = O(n)
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More complex settings

Flip algorithm [Green and Sibson]

Courtesy: Lischinski[93]
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More complex settings

Line segment intersections

No intersections between red. All blue segments intersect.

Intermediate structures (trapezoidal maps) can have huge variance
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More complex settings

Expected number of intersections at stage i

Probability intersection (sj , sk) appear in stage i = Probabilty sj , sk have
been chosen.

E[Mi ] = m · i
n ·

i
n = m · i2

n2
Ideal bound for segment intersections : O(m + n log n)
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More complex settings

Summary of results

Problem Exp Run time Tail estimates
Quicksort O(n log n) O(cγn log n) w.p. ≥ 1− n−c

Delaunay Triangulation O(n log n) O(cγn log n) w.p. ≥ 1− 2−c

Segment intersections/ O(n log n + m) O(n log n + m) w.p.
Trapezoidal maps *no conflict list* 1− exp−( m+n log n

nα(n) )
*using conflict list** w.p. ≥ 1− exp−( m

n log2 n )

The non-conflict bound is nearly inverse polynomial for m = 0, i.e.,
exp−(log n/α(n))
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Lower bounds

A lower bound construction

|U| = |B| = n
2

Among first 3
√

n insertions, Pr[B ≥
√

n] ≥ 1− 2
√

n.

Pr[|T | ≥ c(n)
√

n] ≥ 4−3c(n)
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Lower bounds

Construction cont.

Number of times s moves down without touching T ′ (shaded region) = r
⇒ RIC incurs r · c(n)

√
(n)
√

(n) cost

Pr[r ≥ Ω(log log n)] ≥
1

log n
say α = 1/2

Pr[X ≥ n log n log log n] ≥
1
√

n
for c(n) = Ω(log n)
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Lower bounds

Future directions

Inverse polynomial bounds open for Delaunay, Line segments and
many others
More lower bound constructions
Distinct variations of RICs (rebuild ?) may have different performance
including data structures like conflict lists (without).
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