Concentration bounds for RIC^{2}
 (Randomized Incremental Construction)

Sandeep Sen
IIT Delhi, India
Feb 8, 2019

(1) Introduction

(2) A Martingales based framework and Quicksort
(3) More complex settings
(4) Lower bounds

Once upon a time ..

Conceived : 1986
Forgotten: 1993
Copyright:(c) Nilikha | Dreamstime.com

Randomized Incremental Construction (RIC)

Starting from an empty set

Repeat:

(1) Insert the next object
(2) Update the partial construction (data-structures)

Randomized Incremental Construction (RIC)

Starting from an empty set
Repeat:
(1) Insert the next object
(2) Update the partial construction (data-structures)

Total Time $=\sum_{i}$ Time to insert the i-th object.

Randomized Incremental Construction (RIC)

Starting from an empty set
Repeat:
(1) Insert the next object
(2) Update the partial construction (data-structures)

Total Time $=\sum_{i}$ Time to insert the i-th object.
$T_{s}(N)=$ Total time to insert a sequence s. (s is good if total time is less).

Randomized Incremental Construction (RIC)

Starting from an empty set

Repeat:

(1) Insert the next object
(2) Update the partial construction (data-structures)

Total Time $=\sum_{i}$ Time to insert the i-th object.
$T_{s}(N)=$ Total time to insert a sequence s. (s is good if total time is less).

Expected total time $=\max _{\text {input }} \iota \mathbb{E}\left[T_{s}(I)\right]$ (worst case for any input of size n).

Quicksort as R.I.C.

Gradual refinement of partition

Quicksort as R.I.C.

Conflict graph

Quicksort as R.I.C.

Conflict graph

Bounding the maximum sub-problem size

$\Pi(n)$: set of subproblems defined by n objects σ : a subproblem is defined by $D(\sigma)$ elements $I(\sigma)$: size of the subproblem (unchosen elements in σ)

Bounding the maximum sub-problem size

$\Pi(n)$: set of subproblems defined by n objects
σ : a subproblem is defined by $D(\sigma)$ elements $I(\sigma)$: size of the subproblem (unchosen elements in σ)

Example: Quicksort

$$
\Pi(n)=\binom{n}{2} \text { pairs of points }
$$

A subproblem is defined by a pair of sample points
$D(\sigma)$ end-points of σ
$I(\sigma)$: unsampled points in σ

Bounding the maximum sub-problem size

$\Pi(n)$: set of subproblems defined by n objects σ : a subproblem is defined by $D(\sigma)$ elements $I(\sigma)$: size of the subproblem (unchosen elements in σ)

Example: Quicksort

$$
\Pi(n)=\binom{n}{2} \text { pairs of points }
$$

A subproblem is defined by a pair of sample points
$D(\sigma)$ end-points of σ

$$
I(\sigma): \text { unsampled points in } \sigma
$$

$\square^{0}(n)$ special significance : $\quad l(\sigma)=0$

Bounding the maximum sub-problem

Claim :

$$
\begin{gathered}
\operatorname{Pr}\left\{\max _{\text {active } \sigma} I(\sigma) \geq c \frac{n}{r} \log r\right\} \leq \frac{1}{2} \\
R \text { chosen by Bernoulli sampling } p=r / n
\end{gathered}
$$

Bounding the maximum sub-problem

Claim :

$$
\operatorname{Pr}\left\{\max _{\text {active } \sigma} I(\sigma) \geq c \frac{n}{r} \log r\right\} \leq \frac{1}{2}
$$

R chosen by Bernoulli sampling $p=r / n$
$p(\sigma, r)$: conditional probability that none of the $k(=I(\sigma))$ elements are selected given $D(\sigma)$ chosen

$$
\begin{aligned}
& \leq(1-r / n)^{k} \\
& \leq e^{-c \log r}=1 / r^{c} \quad \text { for } \quad k \geq c n / r \ln r
\end{aligned}
$$

BAD σ
$q(\sigma, r):$ Prob. that $D(\sigma) \subset R$
$q(\sigma, r):$ Prob. that $D(\sigma) \subset R$
Prob. that σ is active $=p(\sigma, r) \times \operatorname{Pr}[D(\sigma) \subset R]$
$q(\sigma, r):$ Prob. that $D(\sigma) \subset R$
Prob. that σ is active $=p(\sigma, r) \times \operatorname{Pr}[D(\sigma) \subset R]$
Prob. that some σ is active and $\underline{\text { BAD }}(/(\sigma) \geq c(n \ln r) / r)$:
$q(\sigma, r)$: Prob. that $D(\sigma) \subset R$
Prob. that σ is active $=p(\sigma, r) \times \operatorname{Pr}[D(\sigma) \subset R]$
Prob. that some σ is active and BAD $(/(\sigma) \geq c(n \ln r) / r)$:

$$
\begin{gathered}
\leq \frac{1}{r^{c}} \sum_{\sigma \in \Pi(n)} \operatorname{Pr}[D(\sigma) \subset R]=\frac{1}{r^{c}} \sum_{\sigma \in \Pi(n)} E[D(\sigma) \subset R] \\
=\frac{1}{r^{c}} E[\text { number sub-problems for which } D(\sigma) \subset R] \\
\text { (linearity of Expectation) } \\
=r^{O(1)} \text { for } D(\sigma)=O(1)
\end{gathered}
$$

$q(\sigma, r)$: Prob. that $D(\sigma) \subset R$
Prob. that σ is active $=p(\sigma, r) \times \operatorname{Pr}[D(\sigma) \subset R]$
Prob. that some σ is active and BAD $(/(\sigma) \geq c(n \ln r) / r)$:

$$
\begin{gathered}
\leq \frac{1}{r^{c}} \sum_{\sigma \in \Pi(n)} \operatorname{Pr}[D(\sigma) \subset R]=\frac{1}{r^{c}} \sum_{\sigma \in \Pi(n)} E[D(\sigma) \subset R] \\
=\frac{1}{r^{c}} E[\text { number sub-problems for which } D(\sigma) \subset R] \\
\text { (linearity of Expectation) } \\
=r^{O(1)} \text { for } D(\sigma)=O(1) \leq \\
\leq 1 / 2 \text { for appropriate } c
\end{gathered}
$$

More general : Trapezoidal Map

Trapezoidal Map: Ranges

Randomized Incremental Construction

Objects (segments) and ranges (trapezoids)

A more general scenario

Modifications caused by insertion of an object

A general bound for RIC [CI-Sh]

Total (amortised) cost $=O$ (edges created in conflict graph)
Edges can be deleted at most once
General Step: $R \leftarrow R \cup s$ (both random subsets)
Expected work (\#edges created in the conflict graph)=

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} I(\sigma) \cdot \operatorname{Pr}\left\{\sigma \in \Pi^{0}(R \cup s)-\Pi^{0}(R)\right\}
$$

A general bound for RIC [CI-Sh]

Total (amortised) cost $=O$ (edges created in conflict graph)
Edges can be deleted at most once
General Step: $R \leftarrow R \cup s$ (both random subsets)
Expected work (\#edges created in the conflict graph)=

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} I(\sigma) \cdot \operatorname{Pr}\left\{\sigma \in \Pi^{0}(R \cup s)-\Pi^{0}(R)\right\}
$$

From backward analysis this probability is the same as deleting a random element from $R \cup s$ which is $\frac{d(\sigma)}{r+1}$. Substituting

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} I(\sigma) \cdot \frac{d(\sigma)}{r+1}=\frac{d(\sigma)}{r+1} \sum_{\sigma \in \Pi^{0}(R \cup s)} I(\sigma)
$$

A general bound for RIC [CI-Sh]

Total (amortised) cost $=O$ (edges created in conflict graph)
Edges can be deleted at most once
General Step: $R \leftarrow R \cup s$ (both random subsets)
Expected work (\#edges created in the conflict graph)=

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} I(\sigma) \cdot \operatorname{Pr}\left\{\sigma \in \Pi^{0}(R \cup s)-\Pi^{0}(R)\right\}
$$

From backward analysis this probability is the same as deleting a random element from $R \cup s$ which is $\frac{d(\sigma)}{r+1}$. Substituting

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma) \cdot \frac{d(\sigma)}{r+1}=\frac{d(\sigma)}{r+1} \sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma)
$$

Sum bound

$$
\sum_{\sigma \in \Pi^{0}(R \cup s)} l(\sigma)=\frac{n}{r} \cdot E\left[\Pi^{0}(R \cup s)\right]
$$

A general bound on Expected running time of RIC

$$
=O\left(\frac{d(\sigma)}{r} \cdot \frac{n}{r} E\left[\Pi^{0}(R \cup s)\right]\right)
$$

A common scenario $E\left[\Pi^{0}(R)=O(r)\right.$.

$$
\text { Total expected cost of RIC }=\sum_{r=1}^{r=n} O\left(\frac{d}{r} \cdot n\right)
$$

$=O(n \log n)$ (also applicable to convex hulls)

A general bound on Expected running time of RIC

$$
=O\left(\frac{d(\sigma)}{r} \cdot \frac{n}{r} E\left[\Pi^{0}(R \cup s)\right]\right)
$$

A common scenario $E\left[\Pi^{0}(R)=O(r)\right.$.

$$
\text { Total expected cost of RIC }=\sum_{r=1}^{r=n} O\left(\frac{d}{r} \cdot n\right)
$$

$=O(n \log n)$ (also applicable to convex hulls)

OPEN PROBLEM

Tail estimates in the general case

A general bound on Expected running time of RIC

$$
=O\left(\frac{d(\sigma)}{r} \cdot \frac{n}{r} E\left[\Pi^{0}(R \cup s)\right]\right)
$$

A common scenario $E\left[\Pi^{0}(R)=O(r)\right.$.

$$
\text { Total expected cost of RIC }=\sum_{r=1}^{r=n} O\left(\frac{d}{r} \cdot n\right)
$$

$=O(n \log n)$ (also applicable to convex hulls)

OPEN PROBLEM

Tail estimates in the general case without independent repetitions

Sum of subproblem sizes

$$
\begin{aligned}
& \text { Def: } c \text {-order conflict }\binom{I(\sigma)}{c} \text {, for some } c \geq 0 \\
& \text { Let } T_{c}=\sum_{\sigma \in \Pi^{0}(R)}\binom{I(\sigma)}{c}
\end{aligned}
$$

Remark For technical reasons it is not $I(\sigma)^{c}$. $T_{0}=\left|\Pi^{0}(R)\right|$. $T_{1}=$ sum of subproblems.

Sum of subproblem sizes

Def: c-order conflict $\binom{I(\sigma)}{c}$, for some $c \geq 0$
Let $T_{c}=\sum_{\sigma \in \Pi^{0}(R)}\binom{I(\sigma)}{c}$
Remark For technical reasons it is not $I(\sigma)^{c}$. $T_{0}=\left|\Pi^{0}(R)\right|$. $T_{1}=$ sum of subproblems.

$$
\text { Claim } E\left[T_{c}\right]=O\left(\left(\frac{n}{r}\right)^{c} E\left[\Pi^{c}(R)\right]\right)
$$

For constant $c, E\left[\Pi^{c}(R)=O\left(E\left[\Pi^{0}(R)\right]\right.\right.$ implying that average conflict size is very close to $\frac{n}{r}$

Sum of subproblem sizes

$$
\begin{aligned}
& T_{c}=\sum_{\sigma \in \Pi(N)(R)}\binom{I(\sigma)}{c} I_{\sigma, R} \text { where } I_{\sigma, R}=1 \text { if } \sigma \in \Pi^{0}(R) . \\
& E\left[T_{c}\right]=\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)} \cdot(1-p)^{I(\sigma)} \text { for } I(\sigma) \geq c . \\
& =\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)+c \cdot(1-p)^{(\sigma)-c} \cdot\left(\frac{1-p}{p}\right)^{c}} \\
& \leq\left(\frac{1-p}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]
\end{aligned}
$$

Sum of subproblem sizes

$$
\begin{aligned}
& T_{c}=\sum_{\sigma \in \Pi(N)(R)}\binom{I(\sigma)}{c} I_{\sigma, R} \text { where } I_{\sigma, R}=1 \text { if } \sigma \in \Pi^{0}(R) . \\
& E\left[T_{c}\right]=\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)} \cdot(1-p)^{I(\sigma)} \text { for } I(\sigma) \geq c . \\
& =\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)+c} \cdot(1-p)^{I(\sigma)-c} \cdot\left(\frac{1-p}{p}\right)^{c} \\
& \leq\left(\frac{1-p}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]
\end{aligned}
$$

since $\operatorname{Pr}\left\{\sigma \in \Pi^{c}(R)\right\}=\operatorname{Pr}\{d(\sigma)$ objects chosen and c out of $I(\sigma)$ not chosen

Sum of subproblem sizes

$$
\begin{aligned}
& T_{c}=\sum_{\sigma \in \Pi(N)(R)}\binom{I(\sigma)}{c} I_{\sigma, R} \text { where } I_{\sigma, R}=1 \text { if } \sigma \in \Pi^{0}(R) . \\
& E\left[T_{c}\right]=\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)} \cdot(1-p)^{I(\sigma)} \text { for } I(\sigma) \geq c . \\
& =\sum_{\sigma \in \Pi(N)}\binom{I(\sigma)}{c} p^{d(\sigma)+c} \cdot(1-p)^{I(\sigma)-c} \cdot\left(\frac{1-p}{p}\right)^{c} \\
& \leq\left(\frac{1-p}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]
\end{aligned}
$$

since $\operatorname{Pr}\left\{\sigma \in \Pi^{c}(R)\right\}=\operatorname{Pr}\{d(\sigma)$ objects chosen and c out of $I(\sigma)$ not chosen
$\leq\left(\frac{1}{p}\right)^{c} \cdot E\left[\Pi^{c}(R)\right]$ where $p=\frac{r}{n}$.

Standard Tools

Running time is bounded by some probability distribution

Standard Tools

Running time is bounded by some probability distribution

Probabilistic Inequalities:

- Markov

$$
\operatorname{Pr}[X>k E[X]]<1 / k
$$

- Chernoff
$\operatorname{Pr}[X>A] \leq G_{X}(s) \cdot s^{-A}$
- Chebychev

$$
\operatorname{Pr}[|X-E[X]|>r] \leq \sigma^{2} / r^{2}
$$

Notation: $\quad \tilde{O}(\cdot) \stackrel{\text { def }}{=} O(\cdot)$ with prob. $1-\frac{1}{n}$ Inv polynomial
${ }^{31}$ to appear in STACS'19

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$ Example: Objects $\{1,2,3\}$.

B_{0}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{1}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{2}	$[1,2,3],[1,3,2] \ldots$

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$ Example: Objects $\{1,2,3\}$.

B_{0}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{1}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{2}	$[1,2,3],[1,3,2] \ldots$

$Z_{i}=\mathbb{E}\left[Z \mid \bar{X}^{(i)}\right]:$ random variable Z over the probability space (Ω, \mathcal{U})

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$ Example: Objects $\{1,2,3\}$.

B_{0}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{1}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{2}	$[1,2,3],[1,3,2] \ldots$

$Z_{i}=\mathbb{E}\left[Z \mid \bar{X}^{(i)}\right]$: random variable Z over the probability space (Ω, \mathcal{U})
Claim: $Z_{1}, Z_{2} \ldots$ satisfies $\mathbb{E}\left[Z_{i} \mid Z_{0}, Z_{2} \ldots Z_{i-1}\right]=Z_{i-1}$

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$ Example: Objects $\{1,2,3\}$.

B_{0}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{1}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{2}	$[1,2,3],[1,3,2] \ldots$

$Z_{i}=\mathbb{E}\left[Z \mid \bar{X}^{(i)}\right]$: random variable Z over the probability space (Ω, \mathcal{U})
Claim: $Z_{1}, Z_{2} \ldots$ satisfies $\mathbb{E}\left[Z_{i} \mid Z_{0}, Z_{2} \ldots Z_{i-1}\right]=Z_{i-1}$ Doob's martingale

A martingale framework

(Ω, \mathcal{U}) : all permutations of n objects \mathcal{U} uniform probability distribution. \mathcal{B}_{i} blocks of permutations, to the i-prefixes $\bar{X}^{(i)}$
Example: Objects $\{1,2,3\}$.

B_{0}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{1}	$[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]$
B_{2}	$[1,2,3],[1,3,2] \ldots$

$Z_{i}=\mathbb{E}\left[Z \mid \bar{X}^{(i)}\right]$: random variable Z over the probability space (Ω, \mathcal{U})
Claim: $Z_{1}, Z_{2} \ldots$ satisfies $\mathbb{E}\left[Z_{i} \mid Z_{0}, Z_{2} \ldots Z_{i-1}\right]=Z_{i-1}$ Doob's martingale

Deviation from Expectation

Z_{0} : expected runnning time of ric and Z_{n} : actual runnning time
Concentration bound : $\operatorname{Pr}\left[\left|Z_{0}-Z_{n}\right| \geq \lambda\right]<? ? ?$

A martingale inequality

Theorem [Freedman 75]
Let $X_{1}, X_{2} \ldots X_{n}$ be a sequence of random variables and let Y_{k}, a function of $X_{1} \ldots X_{k}$ be a martingale sequence, i.e., $\mathbb{E}\left[Y_{k} \mid X_{1} \ldots X_{k}\right]=Y_{k-1}$ such that $\max _{1 \leq k \leq n}\left\{\left|Y_{k}-Y_{k-1}\right|\right\} \leq M_{n}$. Let

$$
W_{k}=\sum_{j=1}^{k} \mathbb{E}\left[\left(Y_{j}-Y_{j-1}\right)^{2} \mid X_{1} \ldots X_{j-1}\right]=\sum_{j=1}^{k} \operatorname{Var}\left(Y_{j} \mid X_{1} \ldots X_{j-1}\right)
$$

where Var is the variance using $\mathbb{E}\left[Y_{j}\right]=Y_{j-1}$. Then for all λ and $W_{n} \leq \Delta^{2}, \quad \Delta^{2}>0$,

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq \lambda\right] \leq 2 \exp \left(-\frac{\lambda^{2}}{2\left(\Delta^{2}+M_{n} \cdot \lambda / 3\right)}\right)
$$

Martingale inequality

Extended Freedman inequality
Let $\operatorname{Pr}\left[\max _{1 \leq k \leq n}\left\{\left|Y_{k}-Y_{k-1}\right|\right\} \geq M_{n}, W_{n} \geq \Delta^{2}\right] \leq \frac{1}{f(n)}$, then,

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq \lambda\right] \leq 2 \exp \left(-\frac{\lambda^{2}}{2\left(\Delta^{2}+M_{n} \cdot \lambda / 3\right)}\right)+O(1 / f(n))
$$

Martingale inequality

Extended Freedman inequality
Let $\operatorname{Pr}\left[\max _{1 \leq k \leq n}\left\{\left|Y_{k}-Y_{k-1}\right|\right\} \geq M_{n}, W_{n} \geq \Delta^{2}\right] \leq \frac{1}{f(n)}$, then,

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq \lambda\right] \leq 2 \exp \left(-\frac{\lambda^{2}}{2\left(\Delta^{2}+M_{n} \cdot \lambda / 3\right)}\right)+O(1 / f(n))
$$

Azuma-Hoeffding

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq \exp \left(\frac{-t^{2}}{\sum_{i=1}^{n} M_{i}^{2}}\right)
$$

[^0]
Martingale inequality

Extended Freedman inequality
Let $\operatorname{Pr}\left[\max _{1 \leq k \leq n}\left\{\left|Y_{k}-Y_{k-1}\right|\right\} \geq M_{n}, W_{n} \geq \Delta^{2}\right] \leq \frac{1}{f(n)}$, then,

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq \lambda\right] \leq 2 \exp \left(-\frac{\lambda^{2}}{2\left(\Delta^{2}+M_{n} \cdot \lambda / 3\right)}\right)+O(1 / f(n))
$$

Azuma-Hoeffding

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq \exp \left(\frac{-t^{2}}{\sum_{i=1}^{n} M_{i}^{2}}\right)
$$

Mehlhorn-Sharir-Welzl [93] obtained a special kind of Martingale concentration bound that was effective for some cases of line segment intersection RIC.

[^1]
Application to quicksort

Application to quicksort

[^2]
Application to quicksort

$$
l_{j}^{x}= \begin{cases}1 & \text { if interval containing } x \text { changes in step } j \\ 0 & \text { otherwise }\end{cases}
$$

Analysis

$$
\mathbb{E}\left[\sum_{j} l_{j}^{\times}\right]=\sum_{j} \operatorname{Pr}\left[l_{j}^{x}=1\right]=\sum_{j} \frac{2}{j}=\log n
$$

Analysis

$$
\mathbb{E}\left[\sum_{j} l_{j}^{x}\right]=\sum_{j} \operatorname{Pr}\left[l_{j}^{x}=1\right]=\sum_{j} \frac{2}{j}=\log n
$$

$M_{n}=1$ since maximum charge on X is 1 for any pivot.

Analysis

$$
\mathbb{E}\left[\sum_{j} l_{j}^{\times}\right]=\sum_{j} \operatorname{Pr}\left[l_{j}^{\times}=1\right]=\sum_{j} \frac{2}{j}=\log n
$$

$M_{n}=1$ since maximum charge on X is 1 for any pivot.

$$
Y_{j}-Y_{j-1}=w\left(v_{j-1}, v_{j}\right)+\left(\sum_{k=j+1}^{n} \mathbb{E}\left[I_{k}^{\prime}\right]\right)-\left(\sum_{k=j}^{n} \mathbb{E}\left[I_{k}\right]\right)
$$

$=I_{j}-E\left[l_{j}\right]$ assuming $I_{j}, l_{j}^{\prime \prime}$'s have the same distribution

Analysis

$$
\mathbb{E}\left[\sum_{j} l_{j}^{\times}\right]=\sum_{j} \operatorname{Pr}\left[l_{j}^{x}=1\right]=\sum_{j} \frac{2}{j}=\log n
$$

$M_{n}=1$ since maximum charge on X is 1 for any pivot.

$$
Y_{j}-Y_{j-1}=w\left(v_{j-1}, v_{j}\right)+\left(\sum_{k=j+1}^{n} \mathbb{E}\left[I_{k}^{\prime}\right]\right)-\left(\sum_{k=j}^{n} \mathbb{E}\left[I_{k}\right]\right)
$$

$=I_{j}-E\left[l_{j}\right]$ assuming $I_{j}, l_{j}^{\prime \prime}$'s have the same distribution

$$
\begin{aligned}
\mathbb{E}_{j}\left[\left(I_{j}-E\left[l_{j}\right]\right)^{2}\right] & =\mathbb{E}_{j}\left[l_{j}^{2}\right]-\mathbb{E}_{j}^{2}\left[l_{j}\right] \leq \mathbb{E}_{j}\left[l_{j}^{2}\right]-\frac{4}{(n-j)^{2}} \\
& \leq \frac{2}{n-j} l_{j}^{2} \text { also 0-1 indicator rv } \\
\sum_{j=1}^{n} \mathbb{E}_{j-1}\left[\left(Y_{j}-Y_{j-1}\right)^{2}\right] & \leq \sum_{j=1}^{n} \frac{2}{n-j} \leq 2 \log n=W_{n}
\end{aligned}
$$

Inverse polynomial bound for quicksort

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq c \log n\right] \leq \exp \left(-\frac{4 c^{2} \log ^{2} n}{2(\log n+c \log n / 3)}\right) \leq \frac{1}{n^{c}}
$$

Inverse polynomial bound for quicksort

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq c \log n\right] \leq \exp \left(-\frac{4 c^{2} \log ^{2} n}{2(\log n+c \log n / 3)}\right) \leq \frac{1}{n^{c}}
$$

Since l_{j}^{\times}are independent, one can apply Chernoff bounds directly to get similar concentration bounds [Seidel89]

Inverse polynomial bound for quicksort

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq c \log n\right] \leq \exp \left(-\frac{4 c^{2} \log ^{2} n}{2(\log n+c \log n / 3)}\right) \leq \frac{1}{n^{c}}
$$

Since I_{j}^{X} are independent, one can apply Chernoff bounds directly to get similar concentration bounds [Seidel89]

Use of Martingales can reduce the number of random bits significantly.

Inverse polynomial bound for quicksort

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq c \log n\right] \leq \exp \left(-\frac{4 c^{2} \log ^{2} n}{2(\log n+c \log n / 3)}\right) \leq \frac{1}{n^{c}} .
$$

Since l_{j}^{\times}are independent, one can apply Chernoff bounds directly to get similar concentration bounds [Seidel89]

Use of Martingales can reduce the number of random bits significantly.
Azuma-Hoeffding

$$
\operatorname{Pr}\left[\left|Y_{n}-Y_{0}\right| \geq t\right] \leq \exp \left(\frac{-t^{2}}{\sum_{i=1}^{n} M_{i}^{2}}\right)
$$

For $M_{i}=1$, there is no meaningful bound for this setting.

Incremental Delaunay triangulation

Incremental Delaunay triangulation

Total size is $O(i)$ but the degree of a vertex can be large

Incremental Delaunay triangulation

Total size is $O(i)$ but the degree of a vertex can be large

Number of new Δ 's is 5 and can be as large as i but ..
${ }^{44}$ to appear in STACS'19

Incremental Delaunay triangulation

Total size is $O(i)$ but the degree of a vertex can be large

Number of new Δ 's is 5 and can be as large as i but .. the average degree of a planar graph is $O(1)$.
Expected number of triangles that appear over the course of RIC $=O(n)$
${ }^{44}$ to appear in STACS'19

Flip algorithm [Green and Sibson]

(a)

(c)

(e)

(b)

(d)

(f)

Line segment intersections

No intersections between red. All blue segments intersect.

Line segment intersections

No intersections between red. All blue segments intersect.

Intermediate structures (trapezoidal maps) can have huge variance

Expected number of intersections at stage i

Probability intersection $\left(s_{j}, s_{k}\right)$ appear in stage $i=$ Probabilty s_{j}, s_{k} have been chosen.

Expected number of intersections at stage i

Probability intersection $\left(s_{j}, s_{k}\right)$ appear in stage $i=$ Probabilty s_{j}, s_{k} have been chosen.

$$
\mathbb{E}\left[M_{i}\right]=m \cdot \frac{i}{n} \cdot \frac{i}{n}=\frac{m \cdot i^{2}}{n^{2}}
$$

Expected number of intersections at stage i

Probability intersection $\left(s_{j}, s_{k}\right)$ appear in stage $i=$ Probabilty s_{j}, s_{k} have been chosen.

$$
\mathbb{E}\left[M_{i}\right]=m \cdot \frac{i}{n} \cdot \frac{i}{n}=\frac{m \cdot i^{2}}{n^{2}}
$$

Ideal bound for segment intersections: $O(m+n \log n)$
${ }^{49}$ to appear in STACS'19

Summary of results

Problem	Exp Run time	Tail estimates
Quicksort	$O(n \log n)$	$O(c \gamma n \log n)$ w.p. $\geq 1-n^{-c}$
Delaunay Triangulation	$O(n \log n)$	$O(c \gamma n \log n)$ w.p. $\geq 1-2^{-c}$
Segment intersections	$O(n \log n+m)$	$O(n \log n+m)$ w.p.
Trapezoidal maps	*no conflict list*	$1-\exp -\left(\frac{m+n \log n}{n \alpha(n)}\right)$
	*using conflict list**	w.p. $\geq 1-\exp -\left(\frac{m}{n \log ^{2} n}\right)$

Summary of results

Problem	Exp Run time	Tail estimates
Quicksort	$O(n \log n)$	$O(c \gamma n \log n)$ w.p. $\geq 1-n^{-c}$
Delaunay Triangulation	$O(n \log n)$	$O(c \gamma n \log n)$ w.p. $\geq 1-2^{-c}$
Segment intersections	$O(n \log n+m)$	$O(n \log n+m)$ w.p.
Trapezoidal maps	*no conflict list*	$1-\exp -\left(\frac{m+n \log n}{n \alpha(n)}\right)$
	*using conflict list**	w.p. $\geq 1-\exp -\left(\frac{m}{n \log ^{2} n}\right)$

The non-conflict bound is nearly inverse polynomial for $m=0$, i.e., $\exp -(\log n / \alpha(n))$

A lower bound construction

A lower bound construction

$|\mathcal{U}|=|\mathcal{B}|=\frac{n}{2}$
Among first $3 \sqrt{n}$ insertions, $\operatorname{Pr}[\mathcal{B} \geq \sqrt{n}] \geq 1-2^{\sqrt{n}}$.

A lower bound construction

$|\mathcal{U}|=|\mathcal{B}|=\frac{n}{2}$
Among first $3 \sqrt{n}$ insertions, $\operatorname{Pr}[\mathcal{B} \geq \sqrt{n}] \geq 1-2^{\sqrt{n}}$.

$$
\operatorname{Pr}[|T| \geq c(n) \sqrt{n}] \geq 4^{-3 c(n)}
$$

Construction cont.

Construction cont.

Number of times s moves down without touching T^{\prime} (shaded region) $=r$ \Rightarrow RIC incurs $r \cdot c(n) \sqrt{(} n) \sqrt{(} n)$ cost

Construction cont.

Number of times s moves down without touching T^{\prime} (shaded region) $=r$
\Rightarrow RIC incurs $r \cdot c(n) \sqrt{(} n) \sqrt{(} n)$ cost

$$
\operatorname{Pr}[r \geq \Omega(\log \log n)] \geq \frac{1}{\log n} \quad \text { say } \alpha=1 / 2
$$

Construction cont.

Number of times s moves down without touching T^{\prime} (shaded region) $=r$
\Rightarrow RIC incurs $r \cdot c(n) \sqrt{(} n) \sqrt{(} n)$ cost

$$
\begin{gathered}
\operatorname{Pr}[r \geq \Omega(\log \log n)] \geq \frac{1}{\log n} \quad \text { say } \alpha=1 / 2 \\
\operatorname{Pr}[X \geq n \log n \log \log n] \geq \frac{1}{\sqrt{n}} \quad \text { for } c(n)=\Omega(\log n)
\end{gathered}
$$

Future directions

Future directions

- Inverse polynomial bounds open for Delaunay, Line segments and many others

Future directions

- Inverse polynomial bounds open for Delaunay, Line segments and many others
- More lower bound constructions

[^3]
Future directions

- Inverse polynomial bounds open for Delaunay, Line segments and many others
- More lower bound constructions
- Distinct variations of RICs (rebuild ?) may have different performance including data structures like conflict lists (without).

[^4]
[^0]: ${ }^{36}$ to appear in STACS'19

[^1]: ${ }^{36}$ to appear in STACS'19

[^2]: ${ }^{38}$ to appear in STACS'19

[^3]: ${ }^{57}$ to appear in STACS'19

[^4]: ${ }^{57}$ to appear in STACS'19

