Classified Matchings under one sided preferences

Meghana Nasre IIT Madras

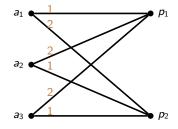
Recent Trends in Algorithms

NISER, Bhubaneshwar Feb 07, 2019

joint work with Prajakta Nimbhorkar (CMI) and Nada Pulath (IIT-M)

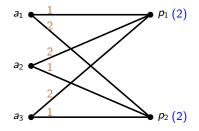
Input:

- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.



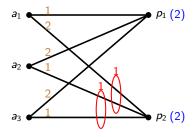
Input:

- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.



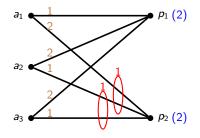
Input:

- A set of applicants A.
- A set of posts P.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



Input:

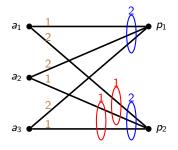
- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



Classes are subsets on the neighborhood.

Input:

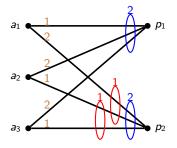
- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



The neighborhood is a trivial class!

Input:

- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



Goal: Match applicants to posts optimally.

Why classifications?

Some natural constraints that can be modelled:

Allotting courses to students

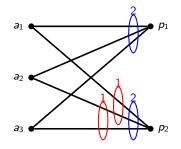
Course - may not want many students from the same Dept.

Allotting tasks to employees

Task - wasteful to have many employees with the same skills.

Input:

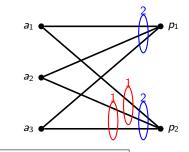
- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



Goal: Compute a <u>maximum</u> cardinality matching.

Input:

- A set of applicants A.
- A set of posts P.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.

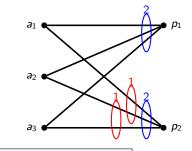


Goal: Compute a <u>maximum</u> cardinality matching.

Arbitrary classes then problem is NP-Hard.

Input:

- A set of applicants A.
- A set of posts P.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have classes.



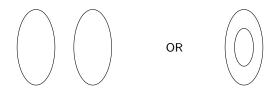
Goal: Compute a <u>maximum</u> cardinality matching.

- Arbitrary classes then problem is NP-Hard.
- Consider special classification families.

Laminar classification

Huang (2010); 2-sided pref.

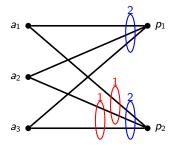
Laminar classification \iff any pair of classes is non-intersecting



- Example: Countries , States , Districts , Cities
- Special case: Partition

Input:

- A set of applicants A
- A set of posts P
- Applicants have preferences over a subset in P
- Posts have quotas
- Posts have laminar classes and quotas



Goal: Compute a <u>maximum</u> cardinality matching.

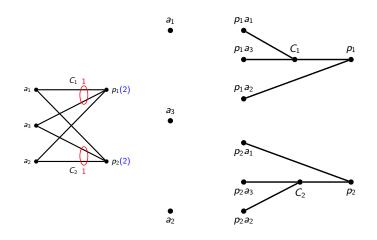
Maximum matchings under laminar classifications

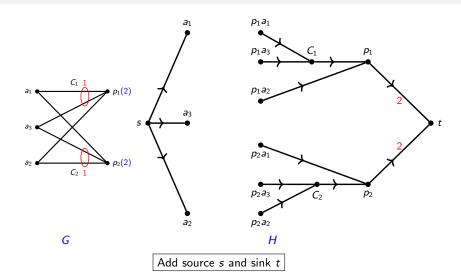
Maximum matchings under laminar classifications

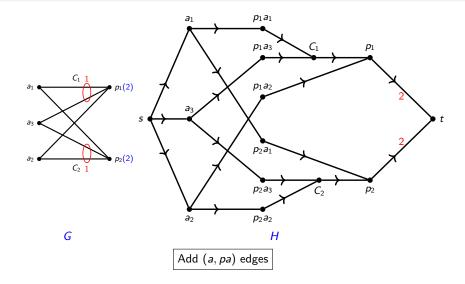
∜

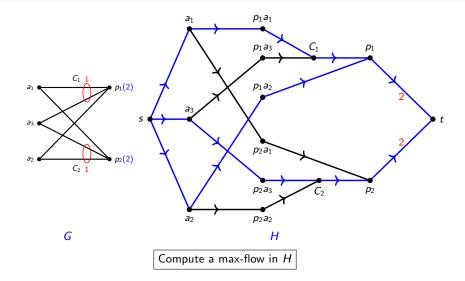
Maximum flow in a flow network

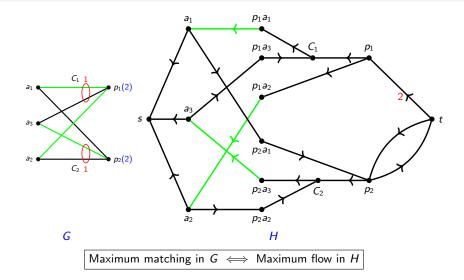
Classification tree - property of laminar classification











Input:

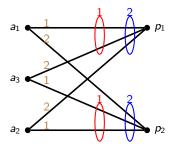
- A set of applicants A.
- A set of posts P.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have laminar classes.

 $a_1 \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{p_1}_{2} \\ a_3 \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{p_2}_{2} \underbrace{p_2} \underbrace{p_2}_{2} \underbrace{p_2}_{2} \underbrace{p_2} \underbrace{p_2}_{2} \underbrace{p_$

Goal: Match applicants to posts optimally.

Input:

- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have laminar classes.

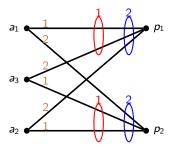


Goal: Match applicants to posts optimally.

Popularity: majority does not want to deviate.

Input:

- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have laminar classes.



Goal: Match applicants to posts optimally.

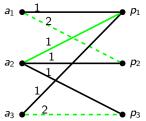
Rank-maximality: max. number to rank-1, subject to this max. number to rank-2, ...

Popularity in the one-to-one setting

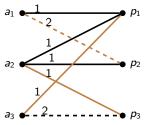
Gärdenfors (1975), Abraham et al.(2005)

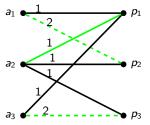
Gärdenfors (1975), Abraham et al.(2005)

 a_1 p_1 p_1 p_2 p_2 p_3



Gärdenfors (1975), Abraham et al.(2005)





	М	<i>M</i> ′
a ₁	-	-
a ₂	-	-
a 3	1	-

Gärdenfors (1975), Abraham et al.(2005)

 p_1

 p_2

 p_3

a1 aı p_1 2 a_2 a_2 D a3 p_3 a3 М Μ a_1 _ *M* beats $M' \implies M'$ is not popular a_2 1 a3

Gärdenfors (1975), Abraham et al.(2005)

a a p_1 p_1 p_2 a_2 a_2 D a3 p_3 a3 p_3 М М a_1 _ *M* beats $M' \implies M'$ is not popular a_2 a3 1

A matching M is popular if no matching beats it.

Gärdenfors (1975), Abraham et al.(2005)

a a p_1 p_1 p_2 a_2 a_2 D a3 p_3 a3 p_3 М М a_1 _ *M* beats $M' \implies M'$ is not popular a_2 a3 1

A matching M is popular if no matching beats it.

Abraham et al. (2005)

A matching M is popular if no matching beats it.

Abraham et al. (2005)

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a)

Abraham et al. (2005)

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a)

f(a) - set of all rank-1 posts of a. s(a) - next most preferred posts of a.

Abraham et al. (2005)

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a)

f(a) - set of all rank-1 posts of a.

- s(a) next most preferred posts of a.
 - If such a matching does not exist, no popular matching exists.

Computing popular matchings

Abraham et al. (2005); Manlove and Sng (2006)

Overall idea: Reduction to two maximum matching computations.

Abraham et al. (2005); Manlove and Sng (2006)

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

 G_1 is graph on rank-1 edges.

2 Compute a maximum matching M_1 in G_1 .

3 Delete "unnecessary" rank-1 edges.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges.
- 4 Some applicants add (a, s(a)) edges.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges.
- 4 Some applicants add (a, s(a)) edges.
- **5** Augment M_1 to compute a maximum matching M.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges.
- 4 Some applicants add (a, s(a)) edges.
- **5** Augment M_1 to compute a maximum matching M.
- **6** If *M* matches all applicants, declare popular, else no popular matching.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

 G_1 is graph on rank-1 edges.

- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges.
- 4 Some applicants add (a, s(a)) edges.
- **5** Augment M_1 to compute a maximum matching M.
- **6** If *M* matches all applicants, declare popular, else no popular matching.

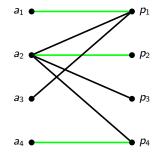
Steps 3 & 4: Dulmage Mendelsohn Decomposition

DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.

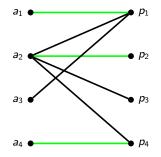
DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.



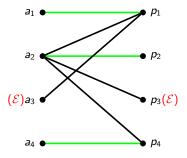
DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.



DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.

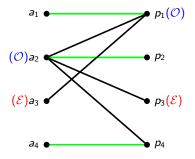


M is a maximum matching

 $\mathbf{\mathcal{E}}$: reachable from unmatched vertex via even length alt. path.

DM (1958)

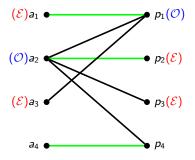
Partition of vertices into three sets w.r.t. a maximum matching.



- **\mathcal{E}** : reachable from unmatched vertex via even length alt. path.
- \blacksquare \mathcal{O} : reachable from unmatched vertex via odd length alt. path.

DM (1958)

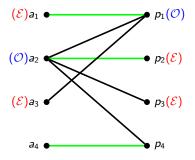
Partition of vertices into three sets w.r.t. a maximum matching.



- $\mathbf{\mathcal{E}}$: reachable from unmatched vertex via even length alt. path.
- \blacksquare \mathcal{O} : reachable from unmatched vertex via odd length alt. path.

DM (1958)

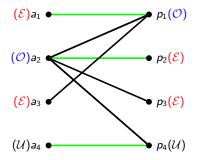
Partition of vertices into three sets w.r.t. a maximum matching.



- $\mathbf{\mathcal{E}}$: reachable from unmatched vertex via even length alt. path.
- \blacksquare \mathcal{O} : reachable from unmatched vertex via odd length alt. path.

DM (1958)

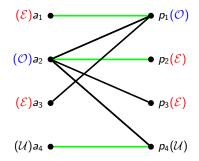
Partition of vertices into three sets w.r.t. a maximum matching.



- $\mathbf{\mathcal{E}}$: reachable from unmatched vertex via even length alt. path.
- \blacksquare \mathcal{O} : reachable from unmatched vertex via odd length alt. path.
- \mathcal{U} : **unreachable** from unmatched vertex via length alt. path.

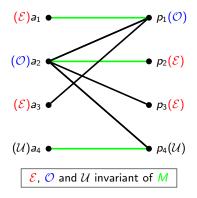
DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.



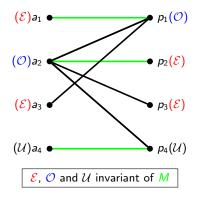
DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.



DM (1958)

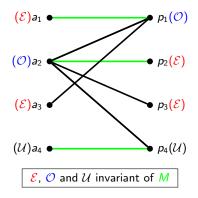
Partition of vertices into three sets w.r.t. a maximum matching.



For any maximum matching:

DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.

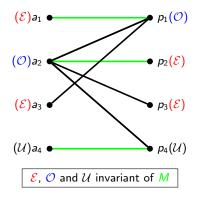


For any maximum matching:

• Every \mathcal{O} and \mathcal{U} vertex is matched.

DM (1958)

Partition of vertices into three sets w.r.t. a maximum matching.



For any maximum matching:

- Every \mathcal{O} and \mathcal{U} vertex is matched.
- No *OO*, *OU* edges are matched.

Abraham et al. (2005); Manlove and Sng (2006)

Overall idea: Reduction to two maximum matching computations.

Overall idea: Reduction to two maximum matching computations.

1 Construct G_1 : every *a* adds (a, f(a)) edges.

- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges. *OO*,*OU* edges.
- **4** Even applicants add (a, s(a)) edges.
- **5** Augment M_1 to compute a maximum matching M.
- If *M* matches all applicants, declare popular, else no popular matching.

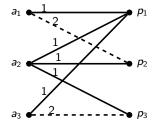
Overall idea: Reduction to two maximum matching computations.

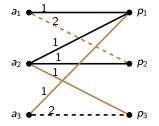
1 Construct G_1 : every *a* adds (a, f(a)) edges.

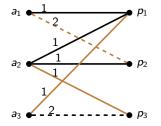
 G_1 is graph on rank-1 edges.

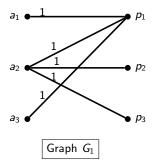
- **2** Compute a maximum matching M_1 in G_1 .
- **3** Delete "unnecessary" rank-1 edges. *OO*,*OU* edges.
- **4** Even applicants add (a, s(a)) edges.
- **5** Augment M_1 to compute a maximum matching M.
- **6** If *M* matches all applicants, declare popular, else no popular matching.

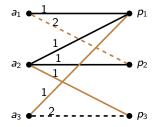
Step 4: s(a) – most preferred even post in G_1 .

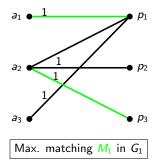


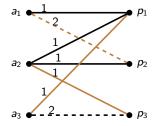


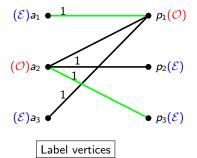


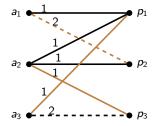


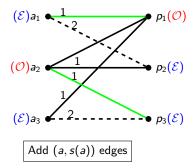


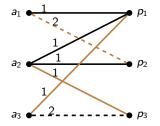


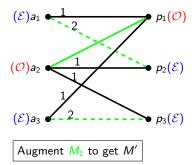


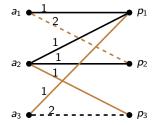


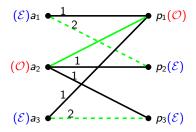












	М	M	
a_1	-	-	M' is not popular
a_2	-	-	
a_3	1	-	

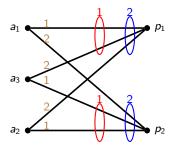
Deletion of OO, OU edges is crucial!

Back to our problem

Back to our problem

Input:

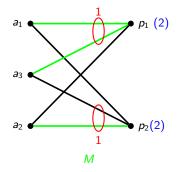
- A set of applicants A.
- A set of posts *P*.
- Applicants have preferences over a subset in *P*.
- Posts have quotas.
- Posts have laminar classes.



Goal: Compute a popular matching of applicants to posts (if one exists).

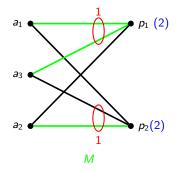
Laminar classified popular matchings

Classified matchings: challenges



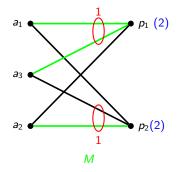
Deal with capacitated matchings.

Classified matchings: challenges



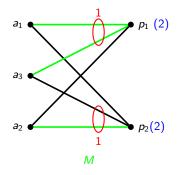
- Deal with capacitated matchings.
 - Manlove and Sng use *cloning*.
 - Paluch defined good paths.

Classified matchings: challenges



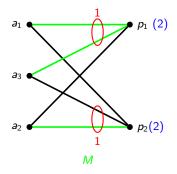
- Deal with capacitated matchings.
 - Manlove and Sng use *cloning*.
 - Paluch defined good paths.
- Both techniques do not work for classifications.

Classified matchings: challenges



- Deal with capacitated matchings.
 - Manlove and Sng use *cloning*.
 - Paluch defined good paths.
- Both techniques do not work for classifications.
 - Maximum matching *M* not feasible.

Classified matchings: challenges



- Deal with capacitated matchings.
 - Manlove and Sng use *cloning*.
 - Paluch defined good paths.
- Both techniques do not work for classifications.
 - Maximum matching *M* not feasible.

Use max-flow and min-cut properties!

Let H be any flow network and f be a max-flow in H.

$$S = \{v \mid \text{ is reachable from } s \text{ in } H_f\}$$
$$T = \{v \mid v \text{ can reach } t \text{ in } H_f\}$$
$$U = \{v \mid v \notin T \cup S\}$$

Let H be any flow network and f be a max-flow in H.

$$S = \{v \mid \text{ is reachable from } s \text{ in } H_f\}$$

$$T = \{v \mid v \text{ can reach } t \text{ in } H_f\}$$

$$U = \{v \mid v \notin T \cup S\}$$

 $(S, T \cup U)$ is a min-s-t-cut in H

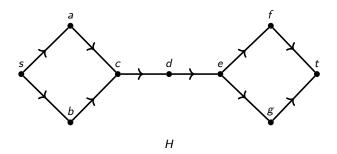
Let H be any flow network and f be a max-flow in H.

$$S = \{v \mid \text{ is reachable from } s \text{ in } H_f\}$$
$$T = \{v \mid v \text{ can reach } t \text{ in } H_f\}$$
$$U = \{v \mid v \notin T \cup S\}$$

 $(S, T \cup U)$ is a min-s-t-cut in H

Known Facts:

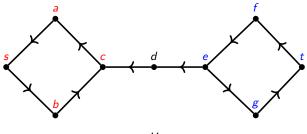
- Forward edges $(S, T \cup U)$: saturated in every max-flow.
- Reverse edges $(T \cup U, S)$: zero flow in every max-flow.



$$S = \{v \mid \text{ is reachable from } s \text{ in } H_f\}$$

$$T = \{v \mid v \text{ can reach } t \text{ in } H_f\}$$

$$U = \{v \mid v \notin T \cup S\}$$



 $S = \{v \mid \text{ is reachable from } s \text{ in } H_f\}$ $T = \{v \mid v \text{ can reach } t \text{ in } H_f\}$ $U = \{v \mid v \notin T \cup S\}$

The sets S, T and U are **invariant** of the max-flow f.

The sets S, T and U are **invariant** of the max-flow f.

(i) $x \in S_f \iff x \in S_{f'}$

```
Properties of max-flow
```

The sets S, T and U are **invariant** of the max-flow f.

(i) $x \in S_f \iff x \in S_{f'}$

Proof: $x \in S_f$ and $x \in T_{f'} \cup U_{f'}$

```
Properties of max-flow
```

The sets S, T and U are **invariant** of the max-flow f.

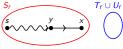
(i) $x \in S_f \iff x \in S_{f'}$

Properties of max-flow

The sets S, T and U are **invariant** of the max-flow f.

(i) $x \in S_f \iff x \in S_{f'}$

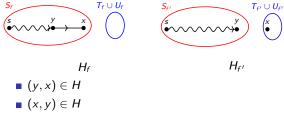
Proof: $x \in S_f$ and $x \in T_{f'} \cup U_{f'}$ x be the nearest such node from s in H_f .



 H_{f}

The sets S, T and U are **invariant** of the max-flow f.

(i)
$$x \in S_f \iff x \in S_{f'}$$



The sets S, T and U are **invariant** of the max-flow f.

(i)
$$x \in S_f \iff x \in S_{f'}$$

H

$$H_{f} \qquad H_{f'}$$

$$(y, x) \in H \Longrightarrow f(y, x) = f'(y, x) = c(y, x). \Rightarrow \Leftarrow$$

$$(x, y) \in H$$

The sets S, T and U are **invariant** of the max-flow f.

(i)
$$x \in S_f \iff x \in S_{f'}$$

$$H_{f} \qquad H_{f'}$$

$$(y,x) \in H \Longrightarrow f(y,x) = f'(y,x) = c(y,x). \Rightarrow \langle (x,y) \in H \Longrightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f(x,y) = f'(x,y) = 0. \Rightarrow \langle (x,y) \in H \Rightarrow f($$

A matching M is popular if no matching beats it.

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum feasible matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a).

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum feasible matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a).

f(a) - set of all rank-1 posts of a.

s(a) - defined using flow network on rank-1 edges.

A matching M is popular if no matching beats it.

A matching M is popular if and only if:

- *M* is a maximum feasible matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a).

f(a) - set of all rank-1 posts of a.

- s(a) defined using flow network on rank-1 edges.
 - If such a matching does not exist, no popular matching exists.

Overall idea: Reduction to two maximum flow computations.

Overall idea: Reduction to two maximum flow computations.

1 Construct H_1 : every *a* adds (a, f(a)) edges.

Overall idea: Reduction to two maximum flow computations.

- **1** Construct H_1 : every *a* adds (a, f(a)) edges.
- **2** Compute a maximum flow f_1 in H_1 .
- 3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Overall idea: Reduction to two maximum flow computations.

- **1** Construct H_1 : every *a* adds (a, f(a)) edges.
- **2** Compute a maximum flow f_1 in H_1 .
- 3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Ensures that augmentation preserves max. card. on rank-1.

Overall idea: Reduction to two maximum flow computations.

- **1** Construct H_1 : every *a* adds (a, f(a)) edges.
- **2** Compute a maximum flow f_1 in H_1 .
- 3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Ensures that augmentation preserves max. card. on rank-1.

I For every $a \in S$, add (a, s(a)) edge. s(a) is the most preferred post $p \in T$ in $H_1(f_1)$.

Overall idea: Reduction to two maximum flow computations.

1 Construct H_1 : every *a* adds (a, f(a)) edges.

2 Compute a maximum flow f_1 in H_1 .

3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Ensures that augmentation preserves max. card. on rank-1.

4 For every
$$a \in S$$
, add $(a, s(a))$ edge.
 $s(a)$ is the most preferred post $p \in T$ in $H_1(f_1)$.

5 Augment f_1 to obtain f_2 . Let *M* be matching corr. to f_2 .

Overall idea: Reduction to two maximum flow computations.

1 Construct H_1 : every *a* adds (a, f(a)) edges.

2 Compute a maximum flow f_1 in H_1 .

3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Ensures that augmentation preserves max. card. on rank-1.

4 For every
$$a \in S$$
, add $(a, s(a))$ edge.

s(a) is the most preferred post $p \in T$ in $H_1(f_1)$.

- **5** Augment f_1 to obtain f_2 . Let *M* be matching corr. to f_2 .
- If *M* matches all applicants, declare popular, else no popular matching.

Overall idea: Reduction to two maximum flow computations.

1 Construct H_1 : every *a* adds (a, f(a)) edges.

2 Compute a maximum flow f_1 in H_1 .

3 Delete $(T \cup U, S)$ edges in $H_1(f_1)$.

Ensures that augmentation preserves max. card. on rank-1.

4 For every
$$a \in S$$
, add $(a, s(a))$ edge.

s(a) is the most preferred post $p \in T$ in $H_1(f_1)$.

- **5** Augment f_1 to obtain f_2 . Let *M* be matching corr. to f_2 .
- If *M* matches all applicants, declare popular, else no popular matching.

[•] An $O(|A| \cdot |E|)$ time algorithm.

Classified popular matchings - correctness

A matching M is popular if and only if:

- *M* is a maximum feasible matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a).

If such a matching does not exist, no popular matching exists.

Classified popular matchings - correctness

A matching M is popular if and only if:

- *M* is a maximum feasible matching on the rank-1 edges.
- Every $a \in A$ is matched to either its f(a) or s(a).

If such a matching does not exist, no popular matching exists.

Proof technique:

- **1** Two promotions at the cost of one demotion.
- 2 Cut edges were deleted \implies augmentation preserves rank-1 edges.

A flow based framework for popular matchings with classifications.

- A flow based framework for popular matchings with classifications.
- Same framework applies for rank-maximal matchings. Classifications are allowed on both sides.

- A flow based framework for popular matchings with classifications.
- Same framework applies for rank-maximal matchings. Classifications are allowed on <u>both</u> sides.
- Key step: Use max-flow, min-cut properties to identify "unnecessary" edges.

- A flow based framework for popular matchings with classifications.
- Same framework applies for rank-maximal matchings. Classifications are allowed on <u>both</u> sides.
- Key step: Use max-flow, min-cut properties to identify "unnecessary" edges.
- Laminarity is needed, else problem is NP-Hard.

- A flow based framework for popular matchings with classifications.
- Same framework applies for rank-maximal matchings. Classifications are allowed on <u>both</u> sides.
- Key step: Use max-flow, min-cut properties to identify "unnecessary" edges.
- Laminarity is needed, else problem is NP-Hard.

Extensions:

- Popular matchings in the many to many settings.
- Lower quotas for classes.

- A flow based framework for popular matchings with classifications.
- Same framework applies for rank-maximal matchings. Classifications are allowed on <u>both</u> sides.
- Key step: Use max-flow, min-cut properties to identify "unnecessary" edges.
- Laminarity is needed, else problem is NP-Hard.

Extensions:

- Popular matchings in the many to many settings.
- Lower quotas for classes.

Thank you!