Dynamic And Fault Tolerant Algorithms

1

Manoj Gupta, IIT Gandhinagar

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Types of Changes

- Incremental/Decremental: only insertions/deletions of edges
- Fully dynamic: both insertions and deletions

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Types of Changes

- Incremental/Decremental: only insertions/deletions of edges
- Fully dynamic: both insertions and deletions

Performance Evaluation

Update time: The time taken to Update the solution

- Connectivity
- Single source shortest path
- All pair shortest path
- Strongly connected components
- Minimum Spanning Tree
- Topological Sorting

 A matching in a graph is a set of edges *M* such that no two edges in *M* share a common endpoint

- A matching in a graph is a set of edges *M* such that no two edges in *M* share a common endpoint
- We can find a $(1 + \epsilon)$ -approximate matching in a static unweighted graph in $O\left(\frac{m}{\epsilon}\right)$ time (Micali and Vazirani, 1980)

Problem

Maintain approximate maximum matching in a dynamic graph

Problem

Maintain approximate maximum matching in a dynamic graph

Model

- At each update step an edge can be added or deleted from the graph
- Compute the matching quickly after each update

In this talk [G. and Peng (FOCS 2013)]

Maintain $(1 + \epsilon)$ -approximate maximum matching in $O\left(\frac{\sqrt{m}}{\epsilon^2}\right)$ update time

Key Idea

Can we find a smaller subgraph G' of G such that the size of the maximum matching in G' is same as the size of maximum matching in G?

Key Idea

Can we find a smaller subgraph G' of G such that the size of the maximum matching in G' is same as the size of maximum matching in G?

Answer

Yes : If you have a approximate vertex cover of the graph

• Assume that we have an oracle access to the vertex cover *V_{cover}* at every update step

- Assume that we have an oracle access to the vertex cover *V_{cover}* at every update step
- Use the algorithm of Neiman and Solomon(STOC 2013): maintain 3/2-approximate matching in a dynamic graph

- Assume that we have an oracle access to the vertex cover *V_{cover}* at every update step
- Use the algorithm of Neiman and Solomon(STOC 2013): maintain 3/2-approximate matching in a dynamic graph
- Report all the vertices in the matching as V_{cover}

Core Graph

- Include all the edges within the vertex cover
- For each *u* ∈ *V*_{cover}, include at most |*V*_{cover}| + 1 neighbors outside the vertex cover

Theorem

The size of maximum matching in core graph G' is same

as the size of maximum matching in G

Among all maximum matchings in G, let M' be one that uses the maximum number of edges in G'.

Proof

Among all maximum matchings in G, let M' be one that uses the maximum number of edges in G'.

Proof

Among all maximum matchings in G, let M' be one that uses the maximum number of edges in G'.

• By construction, *u* has |*V*_{cover}|+1 neighbors outside the vertex cover in *G*'.

Proof

Among all maximum matchings in G, let M' be one that uses the maximum number of edges in G'.

- By construction, *u* has |*V*_{cover}|+1 neighbors outside the vertex cover in *G*'.
- Atleast one of them is unmatched in *M*′, because |*M*′| ≤ size of any vertex cover

• $M'' \leftarrow M' \setminus (u, v) \cup (u, w)$

- $M'' \leftarrow M' \setminus (u, v) \cup (u, w)$
- *M*["] is a maximum matching and its intersection with *G*['] is larger than that of *M*[']
- A contradiction

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

Size of Core Graph G'

• Size of G' is $min\{m, O(|V_{cover}|^2)\}$

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

- Size of G' is $min\{m, O(|V_{cover}|^2)\}$
- $|V_{cover}| = 2|M_{3/2}| \le 2|M^*|$ and $|M^*| \le (1 + \epsilon/2)|M|$

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

- Size of G' is $min\{m, O(|V_{cover}|^2)\}$
- $|V_{cover}| = 2|M_{3/2}| \le 2|M^*|$ and $|M^*| \le (1 + \epsilon/2)|M|$

•
$$|V_{cover}| \le 2(1 + \epsilon/2)|M|$$

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

- Size of G' is $min\{m, O(|V_{cover}|^2)\}$
- $|V_{cover}| = 2|M_{3/2}| \le 2|M^*|$ and $|M^*| \le (1 + \epsilon/2)|M|$
- $|V_{cover}| \le 2(1 + \epsilon/2)|M|$
- Size of G' is $min\{m, O(|M|^2)\}$

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'

- Size of G' is $min\{m, O(|V_{cover}|^2)\}$
- $|V_{cover}| = 2|M_{3/2}| \le 2|M^*|$ and $|M^*| \le (1 + \epsilon/2)|M|$
- $|V_{cover}| \leq 2(1 + \epsilon/2)|M|$
- Size of *G*′ is *min*{*m*, *O*(|*M*|²)}
- Time to find a matching in G' is $O\left(\frac{\min\{m, |M|^2\}}{\epsilon}\right)$

$(1+\epsilon)$ -approximate matching

Algorithm

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'
- Use this matching for the next $\epsilon |M|/2$ update steps

$(1+\epsilon)$ -approximate matching

Algorithm

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'
- Use this matching for the next $\epsilon |M|/2$ update steps

Analysis

• *M* can reduce by atmost 1 wrt maximum matching after each update step

$(1+\epsilon)$ -approximate matching

Algorithm

- Construct a core graph G' of G
- Find a $(1 + \epsilon/2)$ approximate matching *M* in *G*'
- Use this matching for the next $\epsilon |M|/2$ update steps

Analysis

- *M* can reduce by atmost 1 wrt maximum matching after each update step
- After $\epsilon |M|/2$ steps, the matching *M* is $(1 + \epsilon)$ -approximate

• If
$$|M| \ge \sqrt{m}$$
, the amortized update time is
 $O\left(\frac{m\epsilon^{-1}}{\epsilon|M|}\right) = O\left(\frac{\sqrt{m}}{\epsilon^2}\right) \quad (min\{m, |M|^2\})$

• If
$$|M| \ge \sqrt{m}$$
, the amortized update time is
 $O\left(\frac{m\epsilon^{-1}}{\epsilon|M|}\right) = O\left(\frac{\sqrt{m}}{\epsilon^2}\right) \quad (min\{m, |M|^2\})$
• If $|M| < \sqrt{m}$, the amortized update time is
 $O\left(\frac{|M|^2\epsilon^{-1}}{\epsilon|M|}\right) = O\left(\frac{|M|}{\epsilon^2}\right) = O\left(\frac{\sqrt{m}}{\epsilon^2}\right) \quad (min\{m, |M|^2\})$

Theorem

Maintain $(1 + \epsilon)$ -approximate maximum matching in $O\left(\frac{\sqrt{m}}{\epsilon^2}\right)$ update time

Make your own problem

- Incremental, Decremental or Fully Dynamic
- Unweighted or Weighted graphs
- Approximate matching or maximum matching
- Randomized or deterministic
- Worst case update time or Amortized running time
- Directed or Undirected graph

A Fault Tolerant System continues to perform at a desired level in spite of failures in some of its components.

Find a subgraph H of G such that the shortest path from s to all other vertices are preserved in H.

• Find a subgraph *H* of *G* such that the shortest path from *s* to all other vertices avoiding a single edge are preserved in *H*.

• Find a subgraph *H* of *G* such that the shortest path from *s* to all other vertices avoiding a single edge are preserved in *H*.

- Find a subgraph *H* of *G* such that the shortest path from *s* to all other vertices avoiding a single edge are preserved in *H*.
- Parter and Peleg [ESA 2013] showed that $O(n^{3/2})$ edges are both sufficient and necessary.

- Preprocess the input to build a data-structure.
- Preprocessing is free.

• Design a query algorithm that will use your data-structure to answer queries efficiently.

 Given a graph *G* design a data-structure that can answer the following query: find the length of shortest path from a source *s* to *v* where *v* ∈ *V*.

- Given a graph *G* design a data-structure that can answer the following query: find the length of shortest path from a source *s* to *v* where *v* ∈ *V*.
- Store the distances from *s* in *O*(*n*) space, so that queries can be answered in *O*(1) time.

• Given an undirected and unweighted graph *G*, design a data-structure that can find the shortest path from a source node *s* to any destination node avoiding a single edge.

- Given an undirected and unweighted graph *G*, design a data-structure that can find the shortest path from a source node *s* to any destination node avoiding a single edge.
- Formally, the query algorithm should answer the following query quickly, QUERY(s, t, e): Find the length of the shortest path from s to t ∈ V avoiding the edge e.
- Such a (data-structure + query algorithm) is known as distance oracle.

We present a distance oracle of size $\tilde{O}(n^{3/2})$ that can answer queries in $\tilde{O}(1)$ time.

1. Sample a set of terminals \mathcal{T} of size $\tilde{O}(\sqrt{n})$ vertices.

- **1.** Sample a set of terminals \mathcal{T} of size $\tilde{O}(\sqrt{n})$ vertices.
- 2. With a high probability, on any *st* path, there exists a vertex

 $t_s \in \mathcal{T}$ such that $|t_s t| = \tilde{O}(\sqrt{n})$.

- **1.** Store all replacement paths that avoid edges in $t_s t$.
- **2.** Number of shortest paths stored (for a fixed *t*) is $|t_s t| = \tilde{O}(\sqrt{n})$

- **1.** Store all replacement paths that avoid edges in $t_s t$.
- **2.** Number of shortest paths stored (for a fixed *t*) is $|t_s t| = \tilde{O}(\sqrt{n})$
- **3.** The size of the data-structure for a fixed *t* is $\tilde{O}(\sqrt{n})$.
- **4.** The total size of the data-structure is $\tilde{O}(n^{3/2})$.

The Far Case

- **1.** Store the length of the shortest path from *s* to $t_s \in \mathcal{T}$ avoiding each edge on st_s path.
- 2. The space taken = # terminals ×# edges on *st_s* path = $\tilde{O}(\sqrt{n}) \times n = \tilde{O}(n^{3/2})$

- **1.** Store the length of the shortest path from *s* to $t_s \in \mathcal{T}$ avoiding each edge on st_s path.
- **2.** The space taken = # terminals \times # edges on *st*_s path = $\tilde{O}(\sqrt{n}) \times n = \tilde{O}(n^{3/2})$
- **3.** Store the length of the shortest path from $t_s \in \mathcal{T}$ to $t \in V$.
- 4. The space taken = # terminals \times # vertices = $\tilde{O}(\sqrt{n}) \times n = \tilde{O}(n^{3/2})$

28

Main Technical Result

The total number of replacement paths from *s* to *t* that avoid t_s is $O(\sqrt{n})$.

28

Main Theorem

There exists a distance oracle of size $\tilde{O}(n^{3/2})$ that can answer queries in $\tilde{O}(1)$ time.

Main Theorem

There exists a distance oracle of size $\tilde{O}(n^{3/2})$ that can answer queries in $\tilde{O}(1)$ time.

Rest of the talk

The total number of replacement paths from *s* to *t* that avoid t_s is $O(\sqrt{n})$.

Few basic observations

Few basic observations

• Is the picture correct?

Few basic observations

- Is the picture correct?
- No, because if |P₁| ≤ |P₂|, then the replacement path that avoids e₂ is also P₁.

- Is the picture in the right correct?
- No, because if |P₁| ≤ |P₂|, then the replacement path avoid e₂ is also P₁.
- \mathcal{P}_1 : The lower replacement path will pass through the edge avoided by the upper replacement path.

- Can |P₂| ≥ |P₁|?
- No, because if |P₂| ≥ |P₁|, then the replacement path avoiding e₂ is P₁.

- Can $|P_2| \ge |P_1|$?
- No, because if |P₂| ≥ |P₁|, then the replacement path avoiding e₂ is P₁.
- \mathcal{P}_2 : The lower replacement path has length strictly less than the upper replacement path.

- Can |P₂| ≥ |P₁|?
- No, because if |P₂| ≥ |P₁|, then the replacement path avoiding e₂ is P₁.
- \mathcal{P}_2 : The lower replacement path has length strictly less than the upper replacement path.
- Corollary: The length of these paths are distinct.

- Detour of a replacement path.
- Green path or formally $P \setminus st$

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate √n unique vertices of the detour with each replacement path

• $|P_1| = |sa| + |ac| + |cd| + |dt|$

- $|P_1| = |sa| + |ac| + |cd| + |dt|$
- But there is another path from *s* to *t* that avoids *e*₁.

- $|P_1| = |sa| + |ac| + |cd| + |dt|$
- But there is another path from *s* to *t* that avoids *e*₁.
- |sa| + |ac| + |cb| + |bt|

- $|P_1| = |sa| + |ac| + |cd| + |dt|$
- But there is another path from *s* to *t* that avoids *e*₁.
- |sa| + |ac| + |cb| + |bt|
- Why is this a valid path avoiding *e*₁?.

- $|P_1| = |sa| + |ac| + |cd| + |dt|$
- But there is another path from *s* to *t* that avoids *e*₁.
- |sa| + |ac| + |cb| + |bt|
- Why is this a valid path avoiding *e*₁?.
 - *cb* is the part of the detour. So, it cannot pass through *e*₁.
 - Regarding bt, by P₁, lower replacement path (P) passes through the edge avoided by the higher replacement path. So, b lies below e₁. Thus, bt doest not contain e₁.

- $|P_1| = |sa| + |ac| + |cd| + |dt|$
- But there is another path from *s* to *t* that avoids *e*₁.
- |sa| + |ac| + |cb| + |bt|
- Why is this a valid path avoiding *e*₁?.
 - *cb* is the part of the detour. So, it cannot pass through *e*₁.
 - Regarding bt, by P₁, lower replacement path (P) passes through the edge avoided by the higher replacement path. So, b lies below e₁. Thus, bt doest not contain e₁.
- Since this path was not chosen by our algorithm as the replacement path, its length must be > the length of P₁.

- |sa| + |ac| + |cd| + |dt| < |sa| + |ac| + |cb| + |bt| $\implies |cd| + |dt| < |cb| + |bt|$ $\implies |bc| + |cd| + |dt| < 2|cb| + |bt|$ $\implies |bc| + |cd| + |dt| < 2\sqrt{n} + |bt|$
- On the left hand side we have a replacement path from *b* to *t* avoiding *e*₂.

- |sa| + |ac| + |cd| + |dt| < |sa| + |ac| + |cb| + |bt| $\implies |cd| + |dt| < |cb| + |bt|$ $\implies |bc| + |cd| + |dt| < 2|cb| + |bt|$ $\implies |bc| + |cd| + |dt| < 2\sqrt{n} + |bt|$
- On the left hand side we have a replacement path from *b* to *t* avoiding *e*₂.
- A good property of this replacement path is that its length is just 2√n greater than bt. We now exploit this property.

• By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is *e*₂.

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is *e*₂.
- We can thus assume that these paths are starting from *b*.

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is e_2 .
- We can thus assume that these paths are starting from *b*.
- By Property P₂, the lower replacement path have length strictly less than the upper replacement path, that is P.

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is e_2 .
- We can thus assume that these paths are starting from *b*.
- By Property P₂, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_2 states that length of these paths are distinct.

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is e_2 .
- We can thus assume that these paths are starting from *b*.
- By Property P₂, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_2 states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|bt|, |bt| + 2\sqrt{n}]$

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is e_2 .
- We can thus assume that these paths are starting from *b*.
- By Property P₂, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_2 states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|bt|, |bt| + 2\sqrt{n}]$

- By Property \mathcal{P}_1 , all these lower replacement path pass through the edge avoided by *P*, that is e_2 .
- We can thus assume that these paths are starting from *b*.
- By Property P₂, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_2 states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|bt|, |bt| + 2\sqrt{n}] = O(\sqrt{n})$

Main Technical Result

The total number of replacement paths from *s* to *t* that avoid t_s is $O(\sqrt{n})$.

- We extend the above result to multiple sources.
- The extension, though technically involved, uses the strategy shown in this talk.

Open Problems

- What happens for two edge faults?
- For any general k edge faults?
- Fault tolerant all pair shortest path.

Thank You