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Dynamic Graphs

The Problem

• The graph is changing

• Maintain solutions of graph theoretic / optimization
problems more efficiently than recomputing from scratch

Types of Changes

• Incremental/Decremental: only insertions/deletions of
edges

• Fully dynamic: both insertions and deletions

Performance Evaluation
Update time: The time taken to Update the solution
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Examples

• Connectivity

• Single source shortest path

• All pair shortest path

• Strongly connected components

• Minimum Spanning Tree

• Topological Sorting
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Some Definitions

• A matching in a graph is a set of
edges M such that no two edges in
M share a common endpoint

• We can find a (1 + ε)-approximate
matching in a static unweighted
graph in O

(m
ε

)
time (Micali and

Vazirani, 1980)
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The Problem

Problem
Maintain approximate maximum matching in a dynamic graph

Model

• At each update step an edge can be added or deleted from
the graph

• Compute the matching quickly after each update
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In this talk [G. and Peng (FOCS 2013)]

Maintain (1 + ε)-approximate maximum matching in O
(√m
ε2

)
update time
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Key Idea
Can we find a smaller subgraph G′ of G such that the size of
the maximum matching in G′ is same as the size of maximum
matching in G?

Answer
Yes : If you have a approximate vertex cover of the graph
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(1 + ε)-Approximate matching

• Assume that we have an oracle access to the vertex cover
Vcover at every update step

• Use the algorithm of Neiman and Solomon(STOC 2013):
maintain 3/2-approximate matching in a dynamic graph

• Report all the vertices in the matching as Vcover
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Core Graph

• Include all the edges within the vertex cover
• For each u ∈ Vcover , include at most |Vcover |+ 1 neighbors

outside the vertex cover

GG′
u |Vcover |+ 1 neighbors of

u ∈ V \ Vcover

Theorem
The size of maximum matching in core graph G′ is same

as the size of maximum matching in G 9



Proof

Among all maximum matchings in G, let M ′ be one that uses
the maximum number of edges in G′.

u
v

• By construction, u has |Vcover |+1 neighbors outside the
vertex cover in G′.

• Atleast one of them is unmatched in M ′, because |M ′| ≤
size of any vertex cover
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u

w

v

• M ′′ ← M ′ \ (u, v) ∪ (u,w)

• M ′′ is a maximum matching and its intersection with G′ is
larger than that of M ′

• A contradiction
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Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}

• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|
• |Vcover | ≤ 2(1 + ε/2)|M|
• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}

• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|
• |Vcover | ≤ 2(1 + ε/2)|M|
• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}
• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|

• |Vcover | ≤ 2(1 + ε/2)|M|
• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}
• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|
• |Vcover | ≤ 2(1 + ε/2)|M|

• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}
• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|
• |Vcover | ≤ 2(1 + ε/2)|M|
• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



Partial Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

Size of Core Graph G′

• Size of G′ is min{m,O(|Vcover |2)}
• |Vcover | = 2|M3/2| ≤ 2|M∗| and |M∗| ≤ (1 + ε/2)|M|
• |Vcover | ≤ 2(1 + ε/2)|M|
• Size of G′ is min{m,O(|M|2)}

• Time to find a matching in G′ is O
(min{m, |M|2}

ε

)

12



(1 + ε)-approximate matching

Algorithm

• Construct a core graph G′ of G

• Find a (1 + ε/2) approximate matching M in G′

• Use this matching for the next ε|M|/2 update steps

Analysis

• M can reduce by atmost 1 wrt maximum matching after
each update step

• After ε|M|/2 steps, the matching M is (1 + ε)-approximate
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Running time

• If |M| ≥
√

m, the amortized update time is

O
(mε−1

ε|M|

)
= O

(√m
ε2

)
(min{m, |M|2})

• If |M| <
√

m, the amortized update time is

O
( |M|2ε−1

ε|M|

)
= O

( |M|
ε2

)
= O

(√m
ε2

)
(min{m, |M|2})
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Theorem

Maintain (1 + ε)-approximate maximum matching in O
(√m
ε2

)
update time

15



Make your own problem

• Incremental, Decremental or Fully Dynamic

• Unweighted or Weighted graphs

• Approximate matching or maximum matching

• Randomized or deterministic

• Worst case update time or Amortized running time

• Directed or Undirected graph
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Fault Tolerant Algorithms

A Fault Tolerant System continues to perform at a desired level
in spite of failures in some of its components.
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Fault Tolerant Subgraph Problem

G

s

H

s

Find a subgraph H of G such that the shortest path from s to all
other vertices are preserved in H. 18



Fault Tolerant Subgraph Problem

G

s

×

H

• Find a subgraph H of G such that the shortest path from s
to all other vertices avoiding a single edge are preserved in
H.

• Parter and Peleg [ESA 2013] showed that O(n3/2) edges
are both sufficient and necessary.

19
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Fault Tolerant Algorithm

Input Data-
Structure

Query
Algorithm

• Preprocess the input to build a data-structure.

• Preprocessing is free.
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Fault Tolerant Algorithm

Input Data-
Structure

Query
Algorithm

• Design a query algorithm that will use your data-structure
to answer queries efficiently.

20



Fault Tolerant Algorithm

Input Data-
Structure

Query
Algorithm

• Given a graph G design a data-structure that can answer
the following query: find the length of shortest path from a
source s to v where v ∈ V .

20



Fault Tolerant Algorithm

Input Data-
Structure

Query
Algorithm
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Our problem

• Given an undirected and unweighted graph G, design a
data-structure that can find the shortest path from a source
node s to any destination node avoiding a single edge.

• Formally, the query algorithm should answer the following
query quickly, QUERY(s, t ,e): Find the length of the
shortest path from s to t ∈ V avoiding the edge e.

• Such a (data-structure + query algorithm) is known as
distance oracle.
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In this talk [ G. and Singh, ICALP 2018]

We present a distance oracle of size Õ(n3/2) that can answer
queries in Õ(1) time.
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1. Sample a set of terminals T of size Õ(
√

n) vertices.

2. With a high probability, on any st path, there exists a vertex
ts ∈ T such that |tst | = Õ(

√
n).

s

t

ts

Õ(
√

n)
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Near case: e ∈ tst
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e

Far case: e ∈ sts
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The Near Case

1. Store all replacement paths that avoid edges in tst .

2. Number of shortest paths stored (for a fixed t) is
|tst | = Õ(

√
n)

3. The size of the data-structure for a fixed t is Õ(
√

n).

4. The total size of the data-structure is Õ(n3/2).
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The Far Case

s

t

ts

e

Replacement path passes
through ts

s

t

ts

e

Replacement path
avoids ts
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Replacement path passes through ts

1. Store the length of the shortest path from s to ts ∈ T
avoiding each edge on sts path.

2. The space taken = # terminals ×# edges on sts path
= Õ(

√
n)× n = Õ(n3/2)

3. Store the length of the shortest path from ts ∈ T to
t ∈ V .

4. The space taken = # terminals ×# vertices
= Õ(

√
n)× n = Õ(n3/2)
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The replacement path avoids ts

Main Technical Result
The total number of replacement paths
from s to t that avoid ts is O(

√
n).

(a4, a5), |P4|

(a2, a3), |P2|

(a1, a2), |P1| (a3, a4), |P3|

(a6, a7), |P6|

(a5, a6), |P5| (a7, ts), |P7|

Size of our last data-structure

Since the size of the BST is O(
√

n) (for
a fixed t), the total size of the
data-structure is O(n3/2).

s

t
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a4
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P3
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P2

a2

P1

a1
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Main Theorem

There exists a distance oracle of size Õ(n3/2) that can answer
queries in Õ(1) time.

Rest of the talk
The total number of replacement paths from s to t that avoid
ts is O(

√
n).

29
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The replacement path avoids ts

Few basic observations

• Is the picture correct?

• No, because if |P1| ≤ |P2|, then the replacement
path that avoids e2 is also P1.
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e1

e2
P1

P2
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The replacement path avoids ts

• Is the picture in the right correct?

• No, because if |P1| ≤ |P2|, then the replacement
path avoid e2 is also P1.

• P1: The lower replacement path will pass through
the edge avoided by the upper replacement path.

s
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ts

e1

e2
P1

P2
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The replacement path avoids ts

• Can |P2| ≥ |P1|?

• No, because if |P2| ≥ |P1|, then the replacement
path avoiding e2 is P1.

• P2: The lower replacement path has length
strictly less than the upper replacement path.

• Corollary: The length of these paths are distinct.

s

t

ts

e1

e2
P1

P2
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Some Definitions

• Detour of a replacement path.

• Green path or formally P \ st

s

t

ts

e

P

33



• Process replacement
paths from top to
bottom.

• Try to associate
√

n
unique vertices of the
detour with each
replacement path
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n

≥
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n
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n

P2

≥
√

n

P1
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Bad case when |bc| <
√

n

• |P1| = |sa|+ |ac|+ |cd |+ |dt |

• But there is another path from s to t that avoids
e1.

• |sa| + |ac| + |cb| + |bt|

• Why is this a valid path avoiding e1?.

• cb is the part of the detour. So, it cannot pass
through e1.

• Regarding bt , by P1, lower replacement path (P )
passes through the edge avoided by the higher
replacement path. So, b lies below e1. Thus, bt
doest not contain e1.

• Since this path was not chosen by our algorithm
as the replacement path, its length must be > the
length of P1.

s

t

a

d

b

c

ts

e1

e2

P1

P

35



Bad case when |bc| <
√

n

• |P1| = |sa|+ |ac|+ |cd |+ |dt |
• But there is another path from s to t that avoids

e1.

• |sa| + |ac| + |cb| + |bt|

• Why is this a valid path avoiding e1?.

• cb is the part of the detour. So, it cannot pass
through e1.

• Regarding bt , by P1, lower replacement path (P )
passes through the edge avoided by the higher
replacement path. So, b lies below e1. Thus, bt
doest not contain e1.

• Since this path was not chosen by our algorithm
as the replacement path, its length must be > the
length of P1.

s

t

a

d

b

c

ts

e1

e2

P1

P

35



Bad case when |bc| <
√

n

• |P1| = |sa|+ |ac|+ |cd |+ |dt |
• But there is another path from s to t that avoids

e1.

• |sa| + |ac| + |cb| + |bt|

• Why is this a valid path avoiding e1?.

• cb is the part of the detour. So, it cannot pass
through e1.

• Regarding bt , by P1, lower replacement path (P )
passes through the edge avoided by the higher
replacement path. So, b lies below e1. Thus, bt
doest not contain e1.

• Since this path was not chosen by our algorithm
as the replacement path, its length must be > the
length of P1.
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Bad case when |bc| <
√

n

• |sa|+ |ac|+ |cd |+ |dt | < |sa|+ |ac|+ |cb|+ |bt |

=⇒ |cd |+ |dt | < |cb|+ |bt |
=⇒ |bc| + |cd |+ |dt | < 2|cb|+ |bt |
=⇒ |bc| + |cd |+ |dt | < 2

√
n + |bt |

• On the left hand side we have a replacement
path from b to t avoiding e2.

• A good property of this replacement path is that
its length is just 2

√
n greater than bt . We now

exploit this property.
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• By Property P1, all these lower replacement path
pass through the edge avoided by P, that is e2.

• We can thus assume that these paths are
starting from b.

• By Property P2, the lower replacement path have
length strictly less than the upper replacement
path, that is P.

• The corollary of P2 states that length of these
paths are distinct.

• Length of these path strictly lie in the range
[|bt |, |bt |+ 2

√
n]

=O(
√

n)

Main Technical Result
The total number of replacement paths from s to t
that avoid ts is O(

√
n).
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• We extend the above result to multiple sources.

• The extension, though technically involved, uses the
strategy shown in this talk.
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Open Problems

• What happens for two edge faults?

• For any general k edge faults?

• Fault tolerant all pair shortest path.
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Thank You
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