Dynamic And Fault Tolerant Algorithms

Manoj Gupta, IIT Gandhinagar

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Types of Changes

- Incremental/Decremental: only insertions/deletions of edges
- Fully dynamic: both insertions and deletions

Dynamic Graphs

The Problem

- The graph is changing
- Maintain solutions of graph theoretic / optimization problems more efficiently than recomputing from scratch

Types of Changes

- Incremental/Decremental: only insertions/deletions of edges
- Fully dynamic: both insertions and deletions

Performance Evaluation

Update time: The time taken to Update the solution

Examples

- Connectivity
- Single source shortest path
- All pair shortest path
- Strongly connected components
- Minimum Spanning Tree
- Topological Sorting

Some Definitions

- A matching in a graph is a set of edges M such that no two edges in M share a common endpoint

Some Definitions

- A matching in a graph is a set of edges M such that no two edges in M share a common endpoint
- We can find a $(1+\epsilon)$-approximate matching in a static unweighted graph in $O\left(\frac{m}{\epsilon}\right)$ time (Micali and Vazirani, 1980)

Problem

Maintain approximate maximum matching in a dynamic graph

The Problem

Problem

Maintain approximate maximum matching in a dynamic graph

Model

- At each update step an edge can be added or deleted from the graph
- Compute the matching quickly after each update

In this talk [G. and Peng (FOCS 2013)]

Maintain $(1+\epsilon)$-approximate maximum matching in $O\left(\frac{\sqrt{m}}{\epsilon^{2}}\right)$ update time

Key Idea

Can we find a smaller subgraph G^{\prime} of G such that the size of the maximum matching in G^{\prime} is same as the size of maximum matching in G ?

Key Idea

Can we find a smaller subgraph G^{\prime} of G such that the size of the maximum matching in G^{\prime} is same as the size of maximum matching in G ?

Answer

Yes: If you have a approximate vertex cover of the graph

$(1+\epsilon)$-Approximate matching

- Assume that we have an oracle access to the vertex cover $V_{\text {cover }}$ at every update step
- Assume that we have an oracle access to the vertex cover $V_{\text {cover }}$ at every update step
- Use the algorithm of Neiman and Solomon(STOC 2013): maintain 3/2-approximate matching in a dynamic graph

$(1+\epsilon)$-Approximate matching

- Assume that we have an oracle access to the vertex cover $V_{\text {cover }}$ at every update step
- Use the algorithm of Neiman and Solomon(STOC 2013): maintain 3/2-approximate matching in a dynamic graph
- Report all the vertices in the matching as $V_{\text {cover }}$

Core Graph

- Include all the edges within the vertex cover
- For each $u \in V_{\text {cover }}$, include at most $\left|V_{\text {cover }}\right|+1$ neighbors outside the vertex cover

Theorem

The size of maximum matching in core graph G^{\prime} is same as the size of maximum matching in G

Among all maximum matchings in G, let M^{\prime} be one that uses
the maximum number of edges in G^{\prime}.

Proof

Among all maximum matchings in G, let M^{\prime} be one that uses the maximum number of edges in G^{\prime}.

Proof

Among all maximum matchings in G, let M^{\prime} be one that uses the maximum number of edges in G^{\prime}.

- By construction, u has $\left|V_{\text {cover }}\right|+1$ neighbors outside the vertex cover in G^{\prime}.

Proof

Among all maximum matchings in G, let M^{\prime} be one that uses the maximum number of edges in G^{\prime}.

- By construction, u has $\left|V_{\text {cover }}\right|+1$ neighbors outside the vertex cover in G^{\prime}.
- Atleast one of them is unmatched in M^{\prime}, because $\left|M^{\prime}\right| \leq$ size of any vertex cover

- $M^{\prime \prime} \leftarrow M^{\prime} \backslash(u, v) \cup(u, w)$

- $M^{\prime \prime} \leftarrow M^{\prime} \backslash(u, v) \cup(u, w)$
- $M^{\prime \prime}$ is a maximum matching and its intersection with G^{\prime} is larger than that of M^{\prime}
- A contradiction

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Size of Core Graph G^{\prime}

- Size of G^{\prime} is $\min \left\{m, O\left(\left|V_{\text {cover }}\right|^{2}\right)\right\}$

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Size of Core Graph G^{\prime}

- Size of G^{\prime} is $\min \left\{m, O\left(\left|V_{\text {cover }}\right|^{2}\right)\right\}$
- $\left|V_{\text {cover }}\right|=2\left|M_{3 / 2}\right| \leq 2\left|M^{*}\right|$ and $\left|M^{*}\right| \leq(1+\epsilon / 2)|M|$

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Size of Core Graph G^{\prime}

- Size of G^{\prime} is $\min \left\{m, O\left(\left|V_{\text {cover }}\right|^{2}\right)\right\}$
- $\left|V_{\text {cover }}\right|=2\left|M_{3 / 2}\right| \leq 2\left|M^{*}\right|$ and $\left|M^{*}\right| \leq(1+\epsilon / 2)|M|$
- $\left|V_{\text {cover }}\right| \leq 2(1+\epsilon / 2)|M|$

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Size of Core Graph G^{\prime}

- Size of G^{\prime} is $\min \left\{m, O\left(\left|V_{\text {cover }}\right|^{2}\right)\right\}$
- $\left|V_{\text {cover }}\right|=2\left|M_{3 / 2}\right| \leq 2\left|M^{*}\right|$ and $\left|M^{*}\right| \leq(1+\epsilon / 2)|M|$
- $\left|V_{\text {cover }}\right| \leq 2(1+\epsilon / 2)|M|$
- Size of G^{\prime} is $\min \left\{m, O\left(|M|^{2}\right)\right\}$

Partial Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}

Size of Core Graph G^{\prime}

- Size of G^{\prime} is $\min \left\{m, O\left(\left|V_{\text {cover }}\right|^{2}\right)\right\}$
- $\left|V_{\text {cover }}\right|=2\left|M_{3 / 2}\right| \leq 2\left|M^{*}\right|$ and $\left|M^{*}\right| \leq(1+\epsilon / 2)|M|$
- $\left|V_{\text {cover }}\right| \leq 2(1+\epsilon / 2)|M|$
- Size of G^{\prime} is $\min \left\{m, O\left(|M|^{2}\right)\right\}$
- Time to find a matching in G^{\prime} is $O\left(\frac{\min \left\{m,|M|^{2}\right\}}{\epsilon}\right)$

$(1+\epsilon)$-approximate matching

Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}
- Use this matching for the next $\epsilon|M| / 2$ update steps

$(1+\epsilon)$-approximate matching

Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}
- Use this matching for the next $\epsilon|M| / 2$ update steps

Analysis

- M can reduce by atmost 1 wrt maximum matching after each update step

$(1+\epsilon)$-approximate matching

Algorithm

- Construct a core graph G^{\prime} of G
- Find a $(1+\epsilon / 2)$ approximate matching M in G^{\prime}
- Use this matching for the next $\epsilon|M| / 2$ update steps

Analysis

- M can reduce by atmost 1 wrt maximum matching after each update step
- After $\epsilon|M| / 2$ steps, the matching M is $(1+\epsilon)$-approximate

Running time

- If $|M| \geq \sqrt{m}$, the amortized update time is

$$
O\left(\frac{m \epsilon^{-1}}{\epsilon|M|}\right)=O\left(\frac{\sqrt{m}}{\epsilon^{2}}\right) \quad\left(\min \left\{m,|M|^{2}\right\}\right)
$$

Running time

- If $|M| \geq \sqrt{m}$, the amortized update time is

$$
O\left(\frac{m \epsilon^{-1}}{\epsilon|M|}\right)=O\left(\frac{\sqrt{m}}{\epsilon^{2}}\right) \quad\left(\min \left\{m,|M|^{2}\right\}\right)
$$

- If $|M|<\sqrt{m}$, the amortized update time is
$O\left(\frac{|M|^{2} \epsilon^{-1}}{\epsilon|M|}\right)=O\left(\frac{|M|}{\epsilon^{2}}\right)=O\left(\frac{\sqrt{m}}{\epsilon^{2}}\right) \quad\left(\min \left\{m,|M|^{2}\right\}\right)$

Theorem

Maintain $(1+\epsilon)$-approximate maximum matching in $O\left(\frac{\sqrt{m}}{\epsilon^{2}}\right)$ update time

Make your own problem

- Incremental, Decremental or Fully Dynamic
- Unweighted or Weighted graphs
- Approximate matching or maximum matching
- Randomized or deterministic
- Worst case update time or Amortized running time
- Directed or Undirected graph

Fault Tolerant Algorithms

A Fault Tolerant System continues to perform at a desired level in spite of failures in some of its components.

Fault Tolerant Subgraph Problem

G
H
Find a subgraph H of G such that the shortest path from s to all other vertices are preserved in H .

Fault Tolerant Subgraph Problem

- Find a subgraph H of G such that the shortest path from s to all other vertices avoiding a single edge are preserved in H.

Fault Tolerant Subgraph Problem

- Find a subgraph H of G such that the shortest path from s to all other vertices avoiding a single edge are preserved in H.

Fault Tolerant Subgraph Problem

- Find a subgraph H of G such that the shortest path from s to all other vertices avoiding a single edge are preserved in H.
- Parter and Peleg [ESA 2013] showed that $O\left(n^{3 / 2}\right)$ edges are both sufficient and necessary.

Fault Tolerant Algorithm

- Preprocess the input to build a data-structure.
- Preprocessing is free.

Fault Tolerant Algorithm

Input

Data-

Structure

Query Algorithm

- Design a query algorithm that will use your data-structure to answer queries efficiently.

Fault Tolerant Algorithm

Input

Data-

Structure

Query Algorithm

- Given a graph G design a data-structure that can answer the following query: find the length of shortest path from a source s to v where $v \in V$.

Fault Tolerant Algorithm

Input

Data-

Structure

Query Algorithm

- Given a graph G design a data-structure that can answer the following query: find the length of shortest path from a source s to v where $v \in V$.
- Store the distances from s in $O(n)$ space, so that queries can be answered in $O(1)$ time.

Our problem

- Given an undirected and unweighted graph G, design a data-structure that can find the shortest path from a source node s to any destination node avoiding a single edge.

Our problem

- Given an undirected and unweighted graph G, design a data-structure that can find the shortest path from a source node s to any destination node avoiding a single edge.
- Formally, the query algorithm should answer the following query quickly, $\operatorname{QuERY}(s, t, e)$: Find the length of the shortest path from s to $t \in V$ avoiding the edge e.
- Such a (data-structure + query algorithm) is known as distance oracle.

We present a distance oracle of size $\tilde{O}\left(n^{3 / 2}\right)$ that can answer queries in $\tilde{O}(1)$ time.

1. Sample a set of terminals \mathcal{T} of size $\tilde{O}(\sqrt{n})$ vertices.
2. Sample a set of terminals \mathcal{T} of size $\tilde{O}(\sqrt{n})$ vertices.
3. With a high probability, on any st path, there exists a vertex $t_{s} \in \mathcal{T}$ such that $\left|t_{s} t\right|=\tilde{O}(\sqrt{n})$.

Near case: $e \in t_{s} t$
Far case: $e \in s t_{s}$

The Near Case

s

1. Store all replacement paths that avoid edges in $t_{s} t$.
2. Number of shortest paths stored (for a fixed t) is

$$
\left|t_{s} t\right|=\tilde{O}(\sqrt{n})
$$

The Near Case

1. Store all replacement paths that avoid edges in $t_{s} t$.
2. Number of shortest paths stored (for a fixed t) is

$$
\left|t_{s} t\right|=\tilde{O}(\sqrt{n})
$$

3. The size of the data-structure for a fixed t is $\tilde{O}(\sqrt{n})$.
4. The total size of the data-structure is $\tilde{O}\left(n^{3 / 2}\right)$.

The Far Case

Replacement path passes through t_{s}

1. Store the length of the shortest path from s to $t_{s} \in \mathcal{T}$ avoiding each edge on $s t_{s}$ path.
2. The space taken $=\#$ terminals $\times \#$ edges on $s t_{s}$ path

$$
=\tilde{O}(\sqrt{n}) \times n=\tilde{O}\left(n^{3 / 2}\right)
$$

Replacement path passes through t_{s}

1. Store the length of the shortest path from s to $t_{s} \in \mathcal{T}$ avoiding each edge on $s t_{s}$ path.
2. The space taken $=\#$ terminals $\times \#$ edges on $s t_{s}$ path

$$
=\tilde{O}(\sqrt{n}) \times n=\tilde{O}\left(n^{3 / 2}\right)
$$

3. Store the length of the shortest path from $t_{s} \in \mathcal{T}$ to $t \in V$.
4. The space taken $=$ \# terminals $\times \#$ vertices

$$
=\tilde{O}(\sqrt{n}) \times n=\tilde{O}\left(n^{3 / 2}\right)
$$

The replacement path avoids t_{s}

The replacement path avoids t_{s}

Main Technical Result

The total number of replacement paths from s to t that avoid t_{s} is $O(\sqrt{n})$.

The replacement path avoids t_{s}

Size of our last data-structure

Since the size of the BST is $O(\sqrt{n})$ (for a fixed t), the total size of the data-structure is $O\left(n^{3 / 2}\right)$.

Main Theorem

There exists a distance oracle of size $\tilde{O}\left(n^{3 / 2}\right)$ that can answer queries in $\tilde{O}(1)$ time.

Main Theorem

There exists a distance oracle of size $\tilde{O}\left(n^{3 / 2}\right)$ that can answer queries in $\tilde{O}(1)$ time.

Rest of the talk

The total number of replacement paths from s to t that avoid t_{s} is $O(\sqrt{n})$.

The replacement path avoids t_{s}

Few basic observations

The replacement path avoids t_{s}

Few basic observations

- Is the picture correct?

The replacement path avoids t_{s}

Few basic observations

- Is the picture correct?
- No, because if $\left|P_{1}\right| \leq\left|P_{2}\right|$, then the replacement path that avoids e_{2} is also P_{1}.

The replacement path avoids t_{s}

- Is the picture in the right correct?
- No, because if $\left|P_{1}\right| \leq\left|P_{2}\right|$, then the replacement P_{1} path avoid e_{2} is also P_{1}.
- \mathcal{P}_{1} : The lower replacement path will pass through the edge avoided by the upper replacement path.

The replacement path avoids t_{s}

- Can $\left|P_{2}\right| \geq\left|P_{1}\right|$?

- Can $\left|P_{2}\right| \geq\left|P_{1}\right|$?
- No, because if $\left|P_{2}\right| \geq\left|P_{1}\right|$, then the replacement path avoiding e_{2} is P_{1}.

- Can $\left|P_{2}\right| \geq\left|P_{1}\right|$?
- No, because if $\left|P_{2}\right| \geq\left|P_{1}\right|$, then the replacement path avoiding e_{2} is P_{1}.
- \mathcal{P}_{2} : The lower replacement path has length strictly less than the upper replacement path.

- Can $\left|P_{2}\right| \geq\left|P_{1}\right|$?
- No, because if $\left|P_{2}\right| \geq\left|P_{1}\right|$, then the replacement path avoiding e_{2} is P_{1}.
- \mathcal{P}_{2} : The lower replacement path has length strictly less than the upper replacement path.
- Corollary: The length of these paths are distinct.

Some Definitions

- Detour of a replacement path.
- Green path or formally $P \backslash s t$

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

- Process replacement paths from top to bottom.
- Try to associate \sqrt{n} unique vertices of the detour with each replacement path

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$
- But there is another path from s to t that avoids

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$
- But there is another path from s to t that avoids

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$
- But there is another path from s to t that avoids e_{1}.
- |sa| + |ac| + |cb| + |bt|
- Why is this a valid path avoiding e_{1} ?.

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$
- But there is another path from s to t that avoids

Bad case when $|b c|<\sqrt{n}$

- $\left|P_{1}\right|=|s a|+|a c|+|c d|+|d t|$
- But there is another path from s to t that avoids e_{1}.
- $|\mathrm{sa}|+|\mathrm{ac}|+|\mathrm{cb}|+|\mathrm{bt}|$
- Why is this a valid path avoiding e_{1} ?.
- $c b$ is the part of the detour. So, it cannot pass through e_{1}.
- Regarding bt, by \mathcal{P}_{1}, lower replacement path (P) passes through the edge avoided by the higher replacement path. So, b lies below e_{1}. Thus, $b t$

- Since this path was not chosen by our algorithm as the replacement path, its length must be $>$ the length of P_{1}.

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$ $\Longrightarrow|c d|+|d t|<|c b|+|b t|$

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$
$\Longrightarrow|c d|+|d t|<|c b|+|b t|$
$\Longrightarrow|b c|+|c d|+|d t|<2|c b|+|b t|$

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$
$\Longrightarrow|c d|+|d t|<|c b|+|b t|$
$\Longrightarrow|b c|+|c d|+|d t|<2|c b|+|b t|$
$\Longrightarrow|b c|+|c d|+|d t|<2 \sqrt{n}+|b t|$

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$ $\Longrightarrow|c d|+|d t|<|c b|+|b t|$ $\Longrightarrow|b c|+|c d|+|d t|<2|c b|+|b t|$ $\Longrightarrow|b c|+|c d|+|d t|<2 \sqrt{n}+|b t|$
- On the left hand side we have a replacement path from b to t avoiding e_{2}.

Bad case when $|b c|<\sqrt{n}$

- $|s a|+|a c|+|c d|+|d t|<|s a|+|a c|+|c b|+|b t|$ $\Longrightarrow|c d|+|d t|<|c b|+|b t|$ $\Longrightarrow|b c|+|c d|+|d t|<2|c b|+|b t|$ $\Longrightarrow|b c|+|c d|+|d t|<2 \sqrt{n}+|b t|$
- On the left hand side we have a replacement path from b to t avoiding e_{2}.
- A good property of this replacement path is that its length is just $2 \sqrt{n}$ greater than $b t$. We now exploit this property.

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.
- By Property \mathcal{P}_{2}, the lower replacement path have length strictly less than the upper replacement path, that is P.

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.
- By Property \mathcal{P}_{2}, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_{2} states that length of these paths are distinct.

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.
- By Property \mathcal{P}_{2}, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_{2} states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|b t|,|b t|+2 \sqrt{n}]$

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.
- By Property \mathcal{P}_{2}, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_{2} states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|b t|,|b t|+2 \sqrt{n}]$

- By Property \mathcal{P}_{1}, all these lower replacement path pass through the edge avoided by P, that is e_{2}.
- We can thus assume that these paths are starting from b.
- By Property \mathcal{P}_{2}, the lower replacement path have length strictly less than the upper replacement path, that is P.
- The corollary of \mathcal{P}_{2} states that length of these paths are distinct.
- Length of these path strictly lie in the range $[|b t|,|b t|+2 \sqrt{n}]=O(\sqrt{n})$

Main Technical Result

The total number of replacement paths from s to t that avoid t_{s} is $O(\sqrt{n})$.

- We extend the above result to multiple sources.
- The extension, though technically involved, uses the strategy shown in this talk.

Open Problems

- What happens for two edge faults?
- For any general k edge faults?
- Fault tolerant all pair shortest path.

Thank You

