## Locality-Sensitive Orderings

Authors: Timothy Chan, Sariel Har-Peled, Mitchell Jones (ITCS 2019) Presenter: Anil Maheshwari Carleton University Ottawa, Canada

#### Locality-Sensitive Orderings

Main Result Quadtree ANN *e*-Quadtree Walecki Theorem

Local-Sensitivity Theorem

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

### Local Ordering Theorem (CHJ2019)

Consider a unit cube in *d*-dimensions. For  $\epsilon > 0$ , there is a family of  $O(\frac{1}{\epsilon^d} \log(\frac{1}{\epsilon}))$  orderings of  $[0,1)^d$  such that for any  $p,q \in [0,1)^d$ , there is an ordering in the family where all the points between p and q are within a distance of at most  $\epsilon ||p-q||_2$  from p or q.



### Locality-Sensitive Orderings

 Main Result

 Quadtree

 ANN

 ϵ-Quadtree

 Walecki Theorem

 Local-Sensitivity

 Theorem

Applications

・ロト・西ト・ヨト ヨー うくや

### Old & New Concepts

- Quadtree.
- Inear orderings of points in a Quadtree.
- Shifted Quadtrees and ANN.
- Quadtree as union of  $\epsilon$ -Quadtrees.
- (Wonderful) Walecki Construction from 19th Century.
- Locality-Sensitive Orderings.
- Applications in ANN, Bi-chromatic ANN, Spanners, ...

### Locality-Sensitive Orderings

### Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem





◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

#### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

| 1 |  |
|---|--|
| 1 |  |
| 1 |  |
| 1 |  |
| 1 |  |
|   |  |
| 1 |  |
| 1 |  |
| 1 |  |

### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

Applications

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

### Locality-Sensitive Orderings



### Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

Applications





◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

## Linear order

### DFS traversal of Quadtree

Obtain a linear order of points by performing the DFS traversal of the Quadtree.



#### Locality-Sensitive Orderings

### Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

Walecki Theorem

Local-Sensitivity Theorem



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

Walecki Theorem

Local-Sensitivity Theorem

Applications

・ロト・母 ト・モー・ モー うくぐ



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

Applications



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

Walecki Theorem

Local-Sensitivity Theorem



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

Walecki Theorem

Local-Sensitivity Theorem

Applications

・ロト・雪ト・ヨト・ヨー うへぐ



### Locality-Sensitive Orderings

#### Main Result

### Quadtree

ANN

Walecki Theorem

Local-Sensitivity Theorem

## Approximate NN from Linear Order

### Approximate NN

Let *q* be nearest-neighbor of *p*. Assume that there is a cell containing *p* and *q* in Quadtree with diameter  $\approx ||p - q||$ .



#### Locality-Sensitive Orderings

Main Result Quadtree ANN e-Quadtree Walecki Theorem Local-Sensitivity Theorem

Assume all points in  $P \in [0, 1)^d$ . Construct  $D = 2\lceil \frac{d}{2} \rceil + 1$  copies of P.

### **Shifted Point Sets**

For  $i = 0, \dots, D$ , define shifted point sets  $P_i = \{p_j + (\frac{i}{D+1}, \frac{i}{D+1}, \dots, \frac{i}{D+1}) | \forall p_j \in P\}$ 

Let Quadtrees of  $P_0, P_1, \ldots, P_D$  be  $T_0, T_1, \ldots, T_D$ .

### Chan (DCG98)

For any pair of points  $p, q \in P$ , there exists a Quadtree  $T \in \{T_0, T_1, \ldots, T_D\}$  such that the cell containing p, q in T has diameter c||p - q|| (for some constant  $c \ge 1$ ).

### Locality-Sensitive Orderings

Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

### Chan's ANN Algorithm:

- Construct linear (dfs) order for each of the Quadtrees  $T_0, T_1, \ldots, T_D$ .
- For each point *p*, find its neighbor in each of the linear orders that minimizes the distance.
- Itet q be the neighbor of p with the minimum distance.
- Report q as the ANN of p.

### Chan (1998, 2006)

For fixed dimension d, in  $O(n \log n)$  preprocessing time and O(n) space, we can find a c-approximate nearest neighbor of any point in P in  $O(\log n)$  time (c = f(d)). Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity

## *e*-Quadtree

### $\epsilon$ -Quadtree

For a constant  $\epsilon > 0$ , recursively partition a cube  $[0,1)^d$  evenly into  $\frac{1}{\epsilon^d}$  sub-cubes ( $\epsilon = 1/2 \implies$  Standard Quadtree).



### Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity

## Quadtree as union of *e*-Quadtrees

## Partitioning a Quadtree *T* into $\log \frac{1}{\epsilon} \epsilon$ -Quadtrees Let $\epsilon = 2^{-3}$ . $T = T_{\epsilon}^B \cup T_{\epsilon}^R \cup T_{\epsilon}^U$ .



#### Locality-Sensitive Orderings

Quadtree ANN *e*-Quadtree Walecki Theorem

Local-Sensitivity Theorem

# Ordering cells of a node of an $\epsilon$ -Quadtree

Let  $\epsilon = 2^{-3}$ . Any two cells are neighbors in at least one of the 8 orders.

| А | В | С | D |
|---|---|---|---|
| Е | F | G | Н |
| Ι | J | К | L |
| М | Ν | 0 | Р |

ABPCODNEMFLGKHJI BCADPEOFNGMHLIKJ CDBEAFPGOHNIMJLK DECFBGAHPIOJNKML EFDGCHBIAJPKOLNM FGEHDICJBKALPMON GHFIEJDKCLBMANPO HIGJFKELDMCNBOAP Locality-Sensitive Orderings

Main Result Quadtree ANN €-Quadtree Walecki Theorem

Local-Sensitivity Theorem

### Walecki Theorem

A complete graph on *n* vertices can be partitioned into  $\lceil \frac{n}{2} \rceil$  Hamiltonian paths.



Locality-Sensitive Orderings

### DFS Traversal of an $\epsilon$ -Quadtree $T_{\epsilon}$

- #children of any node of  $T_{\epsilon} = O(1/\epsilon^d)$ .
- 2 Construct  $O(1/\epsilon^d)$  linear orders of cells using Walecki's construction.
- Senerate  $O(1/\epsilon^d)$  permutations of points in *P* by performing DFS traversal of  $T_\epsilon$  with respect to each linear order.

Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

## Structure of Cells

| А | В | С | D |
|---|---|---|---|
| Е | F | G | Н |
| Ι | J | К | L |
| М | Ν | 0 | Р |



Locality-Sensitive Orderings

Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

Applications

| А | В | Р | С | 0 | D | Ν | Е | М | F | L | G | Κ | н | J | Ι |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

### • Point set $P \in [0,1)^d$ .

- Shifted points sets  $P_0, P_1, \ldots, P_D$  and their Quadtrees  $T_0, T_1, \ldots, T_D$ .
- Solution State 3 Sector 2 Sec
- Linear orders of cells of a node in an  $\epsilon$ -Quadtree.
- Permutations of points of P obtained from DFS (for each linear order) of ε-Quadtrees.
- Total #Permutations

$$= O(D \times \log \frac{1}{\epsilon} \times \frac{1}{\epsilon^d}) = O(\frac{1}{\epsilon^d} \log \frac{1}{\epsilon}).$$

These permutations satisfy "locality" condition.

#### Locality-Sensitive Orderings

Main Result

Quadtree

ANN

e-Quadtree

Walecki Theorem

Local-Sensitivity Theorem

### Locality-Sensitive Orderings

Let the Quadtree  $T_i \in \{T_0, T_1, \dots, T_D\}$  has a cell containing p and q with diameter  $\approx ||p - q||$ .



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

### Locality-Sensitive Orderings

Main Result Quadtree ANN e-Quadtree Walecki Theorem

Local-Sensitivity Theorem

### Locality-Sensitive Orderings

Let the Quadtree  $T_i \in \{T_0, T_1, \dots, T_D\}$  has a cell containing p and q with diameter  $\approx ||p - q||$ .



### Locality-Sensitive Orderings

Main Result

Quadtree

ANN

e-Quadtree

Walecki Theorem

Local-Sensitivity Theorem

### Locality-Sensitive Orderings

Let the Quadtree  $T_i \in \{T_0, T_1, \dots, T_D\}$  has a cell containing p and q with diameter  $\approx ||p - q||$ .



#### Locality-Sensitive Orderings

Main Result

Quadtree

ANN

e-Quadtree

Walecki Theorem

Local-Sensitivity Theorem

### Locality-Sensitive Orderings

Let the Quadtree  $T_i \in \{T_0, T_1, \dots, T_D\}$  has a cell containing p and q with diameter  $\approx ||p - q||$ .



### Locality-Sensitive Orderings

Main Result

Quadtree

ANN

 $\epsilon$ -Quadtree

Walecki Theorem

Local-Sensitivity Theorem

### Locality-Sensitive Orderings

Let the Quadtree  $T_i \in \{T_0, T_1, \dots, T_D\}$  has a cell containing p and q with diameter  $\approx ||p - q||$ .



### Locality-Sensitive Orderings

### (CHJ 2019)

Consider a unit cube  $[0,1)^d$ . For  $\epsilon > 0$ , there is a family of  $O(\frac{1}{\epsilon^d}\log(\frac{1}{\epsilon}))$  orderings of  $[0,1)^d$  such that for any  $p,q \in [0,1)^d$ , there is an ordering in the family where all the points between p and q are within a distance of at most  $\epsilon ||p-q||_2$  from p or q.



#### Locality-Sensitive Orderings

Main Result Quadtree ANN ←-Quadtree Walecki Theorer Local-Sensitivity Theorem

Applications

・ロト・西ト・ヨト ヨー うくや

## Approximate Bichromatic NN

- 2 Geometric Spanners
- (Points) Fault-Tolerant Spanners
- Approximate EMST
- Approximate NN
- Oynamization of all of the above

### 7.

### Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theoren Local-Sensitivity Theorem

Applications

・ロ・・聞・・叫・ し・ しゃ

### Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.



### Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity Theorem

### Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.



Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity Theorem

## **Bichromatic NN**

### Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.



### Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity Theorem

**Input:** Bichromatic point set  $R \cup B \in [0, 1)^d$ . **Output:** Bichromatic ANN pair  $(r, b), r \in R, b \in B$ .

For each of D = O(d) quadtrees of shifted point sets & For each of the  $\log \frac{1}{\epsilon} \epsilon$ -quadtrees

- Construct  $O(\frac{1}{\epsilon^d})$  Walecki's orderings.
- For each ordering, perform DFS traversal of the *ϵ*-quadtrees, resulting in a permutation of points in *P*.
- 3 Among all pairs of consecutive red-blue points in all the permutations, find the pair (r, b) that minimizes ||r b||.
- **9** Report (r, b) as Bichromatic ANN.

#### ・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ク Q (や)

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity Theorem

### Bichromatic ANN Theorem (CHJ19)

Let *R* and *B* be two sets of points in  $[0,1)^d$  and let  $\epsilon \in (0,1)$  be a parameter. Then one can maintain a  $(1+\epsilon)$ -approximation to the bichromatic closest pair in  $R \times B$  under updates (i.e., insertions and deletions) in  $O(\log n \log^2 \frac{1}{\epsilon}/\epsilon^d)$  time per operation, where *n* is the total number of points in the two sets. The data structure uses  $O(n \log \frac{1}{\epsilon}/\epsilon^d)$  space, and at all times maintains a pair of points  $r \in R$ ,  $b \in B$ , such that  $||r - b|| \le (1 + \epsilon)d(R, B)$ , where  $d(R, B) = \min_{r \in R, b \in B} ||r - b||$ .

Variants of linear orders/permutations are used to construct dynamic structures for ANN, Geometric Spanners, Approximate EMST, etc.

### Locality-Sensitive Orderings

Main Result Quadtree ANN  $\epsilon$ -Quadtree Walecki Theorem Local-Sensitivity







### Locality-Sensitive Orderings

Main Result Quadtree ANN ε-Quadtree Walecki Theorem Local-Sensitivity Theorem

Applications



### < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <