Clustering and Stability

Amit Deshpande

Microsoft Research India

Outline

- Clustering objects by (NP-hard) objectives
- Stable instances
- Are stable instances easy (poly time solvable)? Why?
- Clustering objective, revisited

Clustering

- Given n data points $x_{1}, x_{2}, \ldots, x_{n}$, along with a similarity distance $d\left(x_{i}, x_{j}\right)$, and a positive integer k, partition the points into disjoint clusters
so as to maximize
similar points in the same cluster and dissimilar points in different clusters.
- Optimization over all k-partitions of the data
- Many simple objectives are NP-hard even for $k=2$, e.g., maximize the sum of $d\left(x_{i}, x_{j}\right)$ over pairs not in the same cluster (a.k.a. the MaxCut problem)

Stability and MaxCut

- A given instance is α-perturbation stable if the optimal MaxCut does not change even when distances are perturbed within a multiplicative factor $\alpha>1$.

$$
d\left(x_{i}, x_{j}\right) \leq D\left(x_{i}, x_{j}\right) \leq \alpha d\left(x_{i}, x_{j}\right)
$$

- Bilu-Linial (2010) show exact poly time algorithm for $\Omega(n)$-stable instances of MaxCut.
- Bilu-Daniely-Linial-Saks (2013) improved this to $\Omega(\sqrt{n})$-stable instances.
- Makarychev-Makarychev-Vijayaraghavan (2014) improved this to $\Omega(\sqrt{\log n} \log \log n)$-stable instances, and showed a matching negative result.

Center-based clustering, k-center/median/means

Given a set X of n data points and an integer $k>0$, find k centers $c_{1}, c_{2}, \ldots, c_{k}$ that minimize

$$
\phi\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\left(\sum_{j=1}^{k}\left(\sum_{x \in C_{j}} d\left(x, c_{j}\right)^{p}\right)^{q / p}\right)^{1 / q}
$$

where C_{j} is the cluster of points that have c_{j} as their nearest center.
$p=q=1$ is k-median, $p=q=2$ is k-means, and $p=q=\infty$ is k-center. All are NP-hard objectives.

For this talk, let's call it discrete k-center/median/means if we optimize only over $C \subseteq X$ or some pre-specified discrete set as part of the input.

Center-based clustering

- Awasthi-Blum-Sheffet (2012) showed exact poly time algorithm for 3 -stable instances of any center-based objective such as k-center/median/means.
- Balcan-Haghtalab-White (2016) showed exact poly time algorithm for 2 -stable instances of symmetric/asymmetric k-center. No polytime algorithm for $(2-\epsilon)$-stable instances unless $N P=R P$.
- Balcan-Liang (2016) improved this to $(1+\sqrt{2})$-stable instances of k-center/median/means.
- Angelidakis-Makarychev-Makarychev (2017) improved this to 2 -stable instances of k-center/median/means.

Other notions of stability

- Additive perturbation resilience proposed by Ackerman and Ben-David (2009).
- (c, ϵ)-approximation stability by Balcan-Blum-Gupta (2013), i.e., every c-approximation to the optimal cost is ϵ-close (in normalized set difference) to the optimal partition.
- Balcan-Liang (2016) showed that (c, ϵ)-approximation stability implies (c, ϵ)-perturbation resilience.
- ϵ-additive perturbation resilience by Vijayaraghavan et al. (2017), where points move by at most $\epsilon \max _{i j}\left\|\mu_{i}-\mu_{j}\right\|$.
- Kumar-Kannan (2010), Awasthi-Sheffet (2012), ...

The (Euclidean) k-means problem

Given a set $X \subseteq \mathbb{R}^{d}$ of n data points and an integer $k>0$, the k-means clustering objective is to find k centers $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}^{d}$ that minimize

$$
\phi\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\sum_{j=1}^{k} \sum_{x \in c_{j}}\left\|x-c_{j}\right\|^{2}
$$

where C_{j} is the cluster of points that have c_{j} as their nearest center.
NP-hard even for $k=2$ (Aloise et al. and Dasgupta-Freund, 2009) or $d=2$ (Mahajan et al., 2009).

For this talk, let's call it discrete k-means if we optimize only over $C \subseteq X$ or some pre-specified discrete set as part of the input.

Center-proximity

For $\alpha>1$, the clustering by $c_{1}, c_{2}, \ldots, c_{k}$ satisfies α-center-proximity if

$$
\alpha d\left(x, c_{i}\right) \leq d\left(x, c_{j}\right), \quad \text { for } x \in C_{i} \text { and } i \neq j .
$$

That is, every point is closer by a multiplicative factor of α to its nearest center than to its second nearest center.

Center-proximity

For $\alpha>1$, the clustering by $c_{1}, c_{2}, \ldots, c_{k}$ satisfies α-center-proximity if

$$
\alpha d\left(x, c_{i}\right) \leq d\left(x, c_{j}\right), \quad \text { for } x \in C_{i} \text { and } i \neq j .
$$

That is, every point is closer by a multiplicative factor of α to its nearest center than to its second nearest center.
α-metric-perturbation-resilience implies α-center-proximity.
Center-proximity used as a proxy for metric perturbation-resilience indirectly in most previous results. Balcan-Liang (2016) exploit that the optimal clusters of $(1+\sqrt{2})$-stable instances are contained in disjoint balls. Vijayaraghavan et al. (2017) use angular separation between optimal clusters for perceptron.

Why center-proximity?

- We do not know how to test if a given clustering instance is stable or perturbation-resilient.
- Underlying ground-truth clustering need not be optimal for our k-center/median/means objective.
- α much larger than 1 is good in theory but impractical.
- For any given $c_{1}, c_{2}, \ldots, c_{k}$ centers, we can easily check if their corresponding clusters satisfy α-center proximity.

Clustering objective, revisited

Given a set $X \subseteq \mathbb{R}^{d}$ of n data points and an integer $k>0$ and a parameter $\alpha>1$, find k centers $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}^{d}$ that minimize

$$
\phi\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\sum_{j=1}^{k} \sum_{x \in c_{j}}\left\|x-c_{j}\right\|^{2}
$$

where C_{j} is the cluster of points that have c_{j} as their nearest center and the clusters satisfy α-center-proximity.

In other words, minimize the cost only over clusterings or partitions that have additional desirable properties as the ground-truth.

Our results

Joint work with Anand Louis and Apoorv Vikram Singh (IISc), to appear at AISTATS'19. https://arxiv.org/abs/1804.10827

- Exact algorithm to find α-center-proximal (balanced) clustering of the least k-means cost, in time exponential in k and $1 /(\alpha-1)$ but linear in the number of points n and the dimension d.
- Similar guarantees for k-means with outliers.
- Given any $\alpha>1$, there exists $\alpha \geq \beta>1$ and $\epsilon>0$ such that it is NP-hard to $(1+\epsilon)$-approximate the minimum of k-means objective over β-center-proximal (even balanced) clusterings.

Geometric insight

Figure 1: Geometric implication of α-center proximity property.

Related work, open problems

- Friggstad-Khodamoradi-Salavatipour (SODA'2019) show exact (local-search) algorithms for α-stable instances of k-means in doubling metrics in poly time. Caveat: works for only small or constant d. https://arxiv.org/abs/1807.05443.
- Are instances where most points satisfy α-center-proximity also easy?
- Any other reasonable notions of stability?
- How/why do practical heuristics work on practical instances?

Thank you. Any questions?

