Space Efficient Data Structures and FM index

Venkatesh Raman

The Institute of Mathematical Sciences, Chennai
NISER Bhubaneshwar, February 9, 2019

Overview

Introduction

Data Structures

Goals
Bit Vectors
Strings from a larger alphabet
Sparse Bit Vectors
Trees
Burrows-Wheeler Transform and Indexing

Libraries

Conclusions

Overview

- Plan of the talk

Overview

- Plan of the talk
- Why Space efficient?

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient?

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)
- How

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)
- How Some examples

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)
- How Some examples
(a binary (or d-ary) vector, subset of a finite universe)

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)
- How Some examples
(a binary (or d-ary) vector, subset of a finite universe)
- Success Story BWT and FM index

Overview

- Plan of the talk
- Why Space efficient?
- What we mean by efficient? (information theory lower bound)
- How Some examples (a binary (or d-ary) vector, subset of a finite universe)
- Success Story BWT and FM index
- A recent book
- Compact Data Structures: A Practical Approach, Gonzalo Navarro, Cambridge UP, 2016.

Data Structures

Data Structures

- Pre-process input data so as to answer (long) series of retrieval or update operations.

Data Structures

- Pre-process input data so as to answer (long) series of retrieval or update operations.
- Want to minimize:

1. Query/Update time.
2. Space usage of data structure.
3. Time of pre-processing.
4. Space for pre-processing.

Data Structures

- Pre-process input data so as to answer (long) series of retrieval or update operations.
- Want to minimize:

1. Query/Update time.
2. Space usage of data structure.
3. Time of pre-processing.
4. Space for pre-processing.

- In this talk we will worry only about the first two, and

Data Structures

- Pre-process input data so as to answer (long) series of retrieval or update operations.
- Want to minimize:

1. Query/Update time.
2. Space usage of data structure.
3. Time of pre-processing.
4. Space for pre-processing.

- In this talk we will worry only about the first two, and our data structures are static.

Space usage of Data Structures

Answering queries on data requires an index in addition to the data. Index may be much larger than the data. E.g.:

Space usage of Data Structures

Answering queries on data requires an index in addition to the data. Index may be much larger than the data. E.g.:

- Range Trees: data structure for answering 2-D orthogonal range queries on n points.
- Good worst-case performance but $\Theta(n \log n)$ words of space.

Space usage of Data Structures

Answering queries on data requires an index in addition to the data. Index may be much larger than the data. E.g.:

- Range Trees: data structure for answering 2-D orthogonal range queries on n points.
- Good worst-case performance but $\Theta(n \log n)$ words of space.
- Suffix Trees: data structure for indexing a sequence T of n symbols from an alphabet of size σ.

Space usage of Data Structures

Answering queries on data requires an index in addition to the data. Index may be much larger than the data. E.g.:

- Range Trees: data structure for answering 2-D orthogonal range queries on n points.
- Good worst-case performance but $\Theta(n \log n)$ words of space.
- Suffix Trees: data structure for indexing a sequence T of n symbols from an alphabet of size σ.
- Supports very complex queries on string patterns quickly but uses $\Theta(n)$ words of space.
- One word must have at least $\log _{2} n$ bits.
- $\Theta(n)$ words is $\Omega(n \log n)$ bits - raw sequence T is $n \log _{2} \sigma$ bits.
- A good implementation takes $10 x$ to $30 x$ space more than T.

Succinct/Compressed Data Structures

$$
\text { Space usage }=\text { "space for data" }+\underbrace{\text { "space for index" }}_{\text {redundancy }} .
$$

- Redundancy (working space used by data structure to answer queries) should be small.

Succinct/Compressed Data Structures

$$
\text { Space usage }=\text { "space for data" }+\underbrace{\text { "space for index" }}_{\text {redundancy }} .
$$

- Redundancy (working space used by data structure to answer queries) should be small. Ideally o(inputsize).
- What should be the space for the data?

Why care about space?

Why care about space?

- While the cost of memory continues to go down, the growth of data is increasing at a much higher rate. (E.g. Search Engines, Genome data)

Why care about space?

- While the cost of memory continues to go down, the growth of data is increasing at a much higher rate. (E.g. Search Engines, Genome data)
- Space is important if we want to pack a lot of data into handheld devices.

Why care about space?

- While the cost of memory continues to go down, the growth of data is increasing at a much higher rate. (E.g. Search Engines, Genome data)
- Space is important if we want to pack a lot of data into handheld devices.
- Sometimes, better space usage increases the amount of data that can be stored in main memory, thereby increasing time efficiency too.

Models of Computation

- Computational model:
- Unit-cost RAM with word size $\Theta(\log n)$ bits.
- Operations on $O(\log n)$ bit operands (addition, subtraction, OR, multiplication, ..) in $O(1)$ time.
- Space counted in terms of bits.

Models of Computation

- Computational model:
- Unit-cost RAM with word size $\Theta(\log n)$ bits.
- Operations on $O(\log n)$ bit operands (addition, subtraction, OR, multiplication, ..) in $O(1)$ time.
- Space counted in terms of bits.
- There are also other models like Cell-probe model with word size $\Theta(\log n)$ bits (normally used for lower bounds).

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

- x is a binary string of length n.
- S is the set of all binary strings of length n.
- $\log _{2}|S|=\log _{2} 2^{n}=n$ bits.

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

- x is a permutation over $\{1, \ldots, n\}$.
- S is the set of all permutations over $\{1, \ldots, n\}$.
- $\log _{2}|S|=\log _{2} n!=n \log _{2} n-n \log _{2} e+o(n)$ bits.

Note that the standard way to represent a permutation takes $n\lceil\lg n\rceil$ bits.

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

- x is a binary string of length n with m s.
- S is the set of all binary strings of length n with m s.
- $\log _{2}|S|=\log _{2}\binom{n}{m}=m \log _{2}(n / m)+O(m)$ bits.
- E.g. if $m=O(n / \log n)$ then the lower bound is $O(m \log \log n)=o(n)$ bits.
- if we just write down the positions of the 1 's, that is $m\left\lceil\log _{2} n\right\rceil$ bits

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

- x is a binary tree of n nodes.
- S is the set of all binary trees of n nodes.
- $\log _{2}|S|=\log _{2} \frac{1}{n+1}\binom{2 n}{n}=2 n-O(\log n)$ bits

Note that the standard binary tree representation uses $\Theta(1)$ pointers per node, or $\Theta(n)$ pointers; each pointer is an address needing $\log n$ bits, so totally $\Theta(n \log n)$ bits, $\log n$ times more than necessary.

"Space for Data"

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we need $\log _{2}|S|$ bits to represent x.

- x is a triangulated planar graph of n nodes.
- S is the set of all triangulated planar graphs with n nodes.
- $\log _{2}|S| \sim 3.24 n$ bits.

There are also bounds for general graphs, chordal graphs, bounded treewidth graphs.

Overview

Introduction

Data Structures

Goals
Bit Vectors
Strings from a larger alphabet
Sparse Bit Vectors
Trees
Burrows-Wheeler Transform and Indexing
Libraries
Conclusions

Succinct Data Structures

Aim is to store using space:

$$
\text { Space usage }=\text { "space for data" }+\underbrace{\text { "space for index" }}_{\text {lower-order term }} .
$$ and perform operations directly on it.

- For static DS, often get $O(1)$ time operations.
- Representation often tightly tied to set of operations.
- They work in practice!

Bit Vectors

Data: Sequence X of n bits, x_{1}, \ldots, x_{n}.
ITLB: n bits; total space $n+o(n)$ bits.

Bit Vectors

Data: Sequence X of n bits, x_{1}, \ldots, x_{n}.
ITLB: n bits; total space $n+o(n)$ bits.

Operations:

- $\operatorname{rank}_{1}(i):$ number of 1 s in x_{1}, \ldots, x_{i}.
- $\operatorname{select}_{1}(i)$: position of i th 1 .

Also ranko, selecto. Ideally all in $O(1)$ time.
Example: $X=01101001, \operatorname{rank}_{1}(4)=2, \operatorname{select}_{0}(4)=7$.

Bit Vectors

Data: Sequence X of n bits, x_{1}, \ldots, x_{n}.
ITLB: n bits; total space $n+o(n)$ bits.

Operations:

- $\operatorname{rank}_{1}(i):$ number of 1 s in x_{1}, \ldots, x_{i}.
- select (i) : position of i th 1.

Also ranko, selecto. Ideally all in $O(1)$ time.
Example: $X=01101001, \operatorname{rank}_{1}(4)=2, \operatorname{select}_{0}(4)=7$.
Operations introduced in [Elias, J. ACM '75], [Tarjan and Yao, C. ACM '78], [Chazelle, SIAM J. Comput '85], [Jacobson, FOCS '89].

Bit Vectors: Implementing rank ${ }_{1}$

$$
\begin{array}{llllllllllllllllllllllllllllllll}
\hline 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

- Naive solution: store answer to all $r^{2} k_{1}$ queries. Space: $O(n \log n)$ bits.

Bit Vectors: Implementing rank ${ }_{1}$

- Naive solution: store answer to all $r^{2} k_{1}$ queries. Space: $O(n \log n)$ bits.
- Sample: store answer only to every $(\log n) / 2$-th $r a n k_{1}$ queries. Space: $O(n)$ bits.

Bit Vectors: Implementing rank ${ }_{1}$

$(\log n) / 2$

- Naive solution: store answer to all $r^{2} k_{1}$ queries. Space: $O(n \log n)$ bits.
- Sample: store answer only to every $(\log n) / 2$-th $r a n k_{1}$ queries. Space: $O(n)$ bits.
- How to support rank $_{1}$ in $O(1)$ time?

Bit-Vectors: Implementing rank ${ }_{1}$

Bit-Vectors: Implementing rank ${ }_{1}$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.

Bit-Vectors: Implementing rank ${ }_{1}$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".

Bit-Vectors: Implementing rank ${ }_{1}$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".
- Let $k=(\log n) / 2$. Create a table A with $2^{k+\log _{2} k}=O(\sqrt{n} \log n)=o(n)$ entries.

Bit-Vectors: Implementing rank

$(\log n) / 2$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".
- Let $k=(\log n) / 2$. Create a table A with $2^{k+\log _{2} k}=O(\sqrt{n} \log n)=o(n)$ entries.
- $A\left[y_{1} \ldots y_{\log _{2} k} x_{1} \ldots x_{k}\right]=$ number of 1 s in $x_{1} \ldots x_{y+1}$ where $y=y_{1} \ldots y_{\log _{2} k}$. (The "four Russians" trick.)

Bit-Vectors: Implementing rank

$(\log n) / 2$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".
- Let $k=(\log n) / 2$. Create a table A with $2^{k+\log _{2} k}=O(\sqrt{n} \log n)=o(n)$ entries.
- $A\left[y_{1} \ldots y_{\log _{2} k} x_{1} \ldots x_{k}\right]=$ number of $1 s$ in $x_{1} \ldots x_{y+1}$ where $y=y_{1} \ldots y_{\log _{2} k}$. (The "four Russians" trick.)
- $\operatorname{rank}_{1}(x)=657+\underbrace{A[10111010011]}_{3}$.

Bit-Vectors: Implementing rank

$(\log n) / 2$

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".
- Let $k=(\log n) / 2$. Create a table A with $2^{k+\log _{2} k}=O(\sqrt{n} \log n)=o(n)$ entries.
- $A\left[y_{1} \ldots y_{\log _{2} k} x_{1} \ldots x_{k}\right]=$ number of $1 s$ in $x_{1} \ldots x_{y+1}$ where $y=y_{1} \ldots y_{\log _{2} k}$. (The "four Russians" trick.)
- $\operatorname{rank}_{1}(x)=657+\underbrace{A[10111010011]}_{3}$.
- $O(n)$ bits, $O(1)$ time.

Bit-Vectors: Implementing rank

$(\log n) / 2$

1	1	0	1	0	0	1	1	0	1	0	0	0	1	0	1	0	0	0	0	0	1	1					1		1	1	
$\hat{3}$								$\overline{0}$								¢															

- Scanning the $(\log n) / 2$ block takes $O(\log n)$ time.
- We will use what is called the "Four Russians trick".
- Let $k=(\log n) / 2$. Create a table A with $2^{k+\log _{2} k}=O(\sqrt{n} \log n)=o(n)$ entries.
- $A\left[y_{1} \ldots y_{\log _{2} k} x_{1} \ldots x_{k}\right]=$ number of $1 s$ in $x_{1} \ldots x_{y+1}$ where $y=y_{1} \ldots y_{\log _{2} k}$. (The "four Russians" trick.)
- $\operatorname{rank}_{1}(x)=657+\underbrace{A[10111010011]}_{3}$.
- $O(n)$ bits, $O(1)$ time.
- Many theoretical SDS: decompose + sample + table lookup.

Bit-Vectors: Implementing rank ${ }_{1}$

Improve redundancy by two-level approach.

Bit-Vectors: Implementing rank ${ }_{1}$

Improve redundancy by two-level approach.

- Store answer for every $\log ^{2} n$ positions. This takes only $O\left(n \log n / \log ^{2} n=n / \log n\right)=o(n)$ bits.

Bit-Vectors: Implementing rank ${ }_{1}$

Improve redundancy by two-level approach.

- Store answer for every $\log ^{2} n$ positions. This takes only $O\left(n \log n / \log ^{2} n=n / \log n\right)=o(n)$ bits.
- Then for every $(\log n) / 2$ positions, store answer within the block. This takes $O(n(\log \log n) / \log n)=o(n)$ bits.

Bit-Vectors: Implementing rank

Improve redundancy by two-level approach.

- Store answer for every $\log ^{2} n$ positions. This takes only $O\left(n \log n / \log ^{2} n=n / \log n\right)=o(n)$ bits.
- Then for every $(\log n) / 2$ positions, store answer within the block. This takes $O(n(\log \log n) / \log n)=o(n)$ bits.
- Then store, as before, a table to find answers within $(\log n) / 2$ positions.

Bit-Vectors: Implementing rank k_{1} Two-level approach

$\begin{aligned} \text { Space } & =n+O\left(\frac{n}{t \lg n} \cdot \lg n+\frac{n}{\lg n} \cdot \lg \lg n\right)+O(\sqrt{n} \cdot \lg n) \\ & =n+O(n \log \log n / \log n) \text { bits: choose } t=\Theta(\log n / \log \log n) .\end{aligned}$

Bit-Vectors: Implementing rank k_{1} Two-level approach

$\begin{aligned} \text { Space } & =n+O\left(\frac{n}{t \lg n} \cdot \lg n+\frac{n}{\lg n} \cdot \lg \lg n\right)+O(\sqrt{n} \cdot \lg n) \\ & =n+O(n \log \log n / \log n) \text { bits: choose } t=\Theta(\log n / \log \log n) .\end{aligned}$

- Redundancy $O(n \lg \lg n / \lg n)$ bits, optimal for $O(1)$ time operations [Golynski, TCS'07].

Bit-Vectors: Implementing rank k_{1} Two-level approach

$\begin{aligned} \text { Space } & =n+O\left(\frac{n}{t \lg n} \cdot \lg n+\frac{n}{\lg n} \cdot \lg \lg n\right)+O(\sqrt{n} \cdot \lg n) \\ & =n+O(n \log \log n / \log n) \text { bits: choose } t=\Theta(\log n / \log \log n) .\end{aligned}$

- Redundancy $O(n \lg \lg n / \lg n)$ bits, optimal for $O(1)$ time operations [Golynski, TCS'07].
- Supporting select ${ }_{1}$ is similar, though a bit complicated.

Bit-Vectors: Implementing select t_{1}; the idea

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.
- Store answer for every $\lg n(\lg \lg n)^{t h} 1$, takes space $n / \lg \lg n$ bits.

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.
- Store answer for every $\lg n(\lg \lg n)^{\text {th }} 1$, takes space $n / \lg \lg n$ bits.
- If the range r between two consecutive answers stored is of size more than $(\lg n \lg \lg n)^{2}$, store the positions of all the $\lg n(\lg \lg n) 1$ in the range;

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.
- Store answer for every $\lg n(\lg \lg n)^{t h} 1$, takes space $n / \lg \lg n$ bits.
- If the range r between two consecutive answers stored is of size more than $(\lg n \lg \lg n)^{2}$, store the positions of all the $\lg n(\lg \lg n) 1$ in the range; takes $(\lg n)^{2}(\lg \lg n)$ bits, which is at most $r / \lg \lg n$.

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.
- Store answer for every $\lg n(\lg \lg n)^{t h} 1$, takes space $n / \lg \lg n$ bits.
- If the range r between two consecutive answers stored is of size more than $(\lg n \lg \lg n)^{2}$, store the positions of all the $\lg n(\lg \lg n) 1$ in the range; takes $(\lg n)^{2}(\lg \lg n)$ bits, which is at most $r / \lg \lg n$.
- Otherwise recurse.

Bit-Vectors: Implementing select t_{1}; the idea

- We will try to manage by using extra $O(n / \log \log n)$ bits.
- Store answer for every $\lg n(\lg \lg n)^{t h} 1$, takes space $n / \lg \lg n$ bits.
- If the range r between two consecutive answers stored is of size more than $(\lg n \lg \lg n)^{2}$, store the positions of all the $\lg n(\lg \lg n) 1$ in the range; takes $(\lg n)^{2}(\lg \lg n)$ bits, which is at most $r / \lg \lg n$.
- Otherwise recurse. After a couple of levels, the range will be small enough $\left(O\left((\lg \lg n)^{4}\right)\right)$ that a table look up can complete the job.

Wavelet Tree - Representing strings from a larger alphabet

Wavelet Tree - Representing strings from a larger alphabet

Data: Sequence $S[1 . . n]$ of symbols from an alphabet of size σ.

Operations:

```
rank(c,i): number of c's in S[1..i].
select(c,i): position of i-th c. \(\operatorname{access}(i):\) return \(S[i]\).

\section*{Wavelet Tree - Representing strings from a larger alphabet}

Data: Sequence \(S[1 . . n]\) of symbols from an alphabet of size \(\sigma\).

\section*{Operations:}
\[
\left.\begin{array}{l}
\operatorname{rank}(c, i): \text { number of } c \text { 's in } S[1 . . i] . \\
\operatorname{select}(c, i): \text { position of } i \text {-th } c . \\
\operatorname{access}(i): \text { return } S[i] .
\end{array}\right\} \text { in } O(\log \sigma) \text { time. }
\]

Store \(\log _{2} \sigma\) BVs: \(\underbrace{n \log \sigma}_{\text {raw size }}+o(n \log \sigma)\) bits [Grossi, Vitter, SJC '05].
\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 0 & 5 & 3 & 2 & 3 & 2 & 6 & 3 & 1 & 1 \\
\hline
\end{array}
\]


0000000
- 000

000
0000000
A Bit vector with only \(m\) 1s

\section*{A Bit vector with only \(m\) 1s}

Data: Sequence \(X\) of \(n\) bits, \(x_{1}, \ldots, x_{n}\) with \(m\) s.

Operations:
- select \({ }_{1}(i)\).

Data: Set \(X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq\) \(\{1, \ldots, n\}, x_{1}<x_{2}<\ldots<x_{m}\).

Operations:
- \(\operatorname{access}(i):\) return \(x_{i}\).

ITLB: \(\log _{2}\binom{n}{m}=m \log _{2}(n / m)+O(m)\) bits.
[Elias, J. ACM'75], [Grossi/Vitter, SICOMP'06], [Raman et al., TALG'07].

\section*{Elias-Fano Representation}

Bucket according to most significant \(b\) bits.
Example. \(b=3,\left\lceil\log _{2} n\right\rceil=5, m=7\).
\begin{tabular}{l|lll|ll}
\(x_{1}\) & & & \\
\(x_{1}\) & 0 & 1 & 0 & 0 & 0 \\
\(x_{2}\) & 0 & 1 & 0 & 0 & 1 \\
\(x_{3}\) & 0 & 1 & 0 & 1 & 1 \\
\(x_{4}\) & 0 & 1 & 1 & & 1 \\
\(x_{5}\) & 1 & 1 \\
\(x_{5}\) & 0 & 0 & 0 & 0 \\
\(x_{6}\) & 1 & 0 & 0 & 1 & 0 \\
\(x_{7}\) & 1 & 0 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{l|l} 
Bucket & Keys \\
\hline 000 & - \\
001 & - \\
010 & \(x_{1}, x_{2}, x_{3}\) \\
011 & \(x_{4}\) \\
100 & \(x_{5}, x_{6}\) \\
101 & \(x_{7}\) \\
110 & - \\
111 & -
\end{tabular}

\section*{Elias-Fano}
\(\triangleright\) Store only low-order bits.
\(\triangleright\) Keep sizes of all buckets.
Example select(6)
\begin{tabular}{l|l|l} 
bkt & sz & data \\
\hline 000 & 0 & - \\
001 & 0 & - \\
010 & 3 & \(\underbrace{00}_{x_{1}}, \underbrace{01}_{x_{2}}, \underbrace{11}_{x_{3}}\), \\
011 & 1 & \(\underbrace{01}_{x_{4}}\) \\
100 & 2 & \(\underbrace{00}_{x_{5}}, \underbrace{10}_{x_{6}}\) \\
101 & 1 & \(\underbrace{11}_{x_{7}}\) \\
110 & 0 & - \\
111 & 0 & -
\end{tabular}

0000000
000

\section*{Elias-Fano}

\section*{Elias-Fano}
- Choose \(b=\left\lfloor\log _{2} m\right\rfloor\) bits. In bucket: \(\left\lceil\log _{2} n\right\rceil-\left\lfloor\log _{2} m\right\rfloor\)-bit keys.

\section*{Elias-Fano}
- Choose \(b=\left\lfloor\log _{2} m\right\rfloor\) bits. In bucket: \(\left\lceil\log _{2} n\right\rceil-\left\lfloor\log _{2} m\right\rfloor\)-bit keys.
- \(m \log _{2} n-m \log _{2} m+O(m)=m \log _{2}(n / m)+O(m)\) bits for lower part.

\section*{Elias-Fano}
- Choose \(b=\left\lfloor\log _{2} m\right\rfloor\) bits. In bucket: \(\left\lceil\log _{2} n\right\rceil-\left\lfloor\log _{2} m\right\rfloor\)-bit keys.
- \(m \log _{2} n-m \log _{2} m+O(m)=m \log _{2}(n / m)+O(m)\) bits for lower part.

\section*{Encoding Bucket Sizes}
\(\begin{array}{lllllllll}\text { Bucket no: } & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111\end{array}\)
Bucket size: \begin{tabular}{lllllllll}
0 & 0 & 3 & 1 & 2 & 1 & 0 & 0
\end{tabular}
- Use a unary encoding: \(0,0,3,1,2,1,0,0 \rightarrow 110001010010111\).

\section*{Elias-Fano}
- Choose \(b=\left\lfloor\log _{2} m\right\rfloor\) bits. In bucket: \(\left\lceil\log _{2} n\right\rceil-\left\lfloor\log _{2} m\right\rfloor\)-bit keys.
- \(m \log _{2} n-m \log _{2} m+O(m)=m \log _{2}(n / m)+O(m)\) bits for lower part.

\section*{Encoding Bucket Sizes}
\(\begin{array}{lllllllll}\text { Bucket no: } & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111\end{array}\)
Bucket size: \(\begin{array}{lllllllll}0 & 0 & 3 & 1 & 2 & 1 & 0 & 0\end{array}\)
- Use a unary encoding: \(0,0,3,1,2,1,0,0 \rightarrow 110001010010111\).
- \(z\) buckets, total size \(m \Rightarrow m+z=O(m)\) bits \(\left(z=2^{\left\lfloor\log _{2} m\right\rfloor}\right)\).
- Overall space of E-F bit-vector is \(m \log (n / m)+O(m)\) bits.
- In which bucket is the 6th key? \(\quad\) "rank \(k_{1}\) of 6 th \(0 "\).
- select \(t_{1}\) in \(O(1)\) time.

\section*{Elias-Fano}
- Choose \(b=\left\lfloor\log _{2} m\right\rfloor\) bits. In bucket: \(\left\lceil\log _{2} n\right\rceil-\left\lfloor\log _{2} m\right\rfloor\)-bit keys.
- \(m \log _{2} n-m \log _{2} m+O(m)=m \log _{2}(n / m)+O(m)\) bits for lower part.

\section*{Encoding Bucket Sizes}
\(\begin{array}{lcccccccc}\text { Bucket no: } & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\ \text { Bucket size: } & 0 & 0 & 3 & 1 & 2 & 1 & 0 & 0\end{array}\)
- Use a unary encoding: \(0,0,3,1,2,1,0,0 \rightarrow 110001010010111\).
- \(z\) buckets, total size \(m \Rightarrow m+z=O(m)\) bits \(\left(z=2^{\left\lfloor\log _{2} m\right\rfloor}\right)\).
- Overall space of E-F bit-vector is \(m \log (n / m)+O(m)\) bits.
- In which bucket is the 6th key? \(\quad\) "rank \(k_{1}\) of 6 th 0 ".
- select \(t_{1}\) in \(O(1)\) time.
- Redundancy can be made \(O(m)\) and membership and Rankone can also be supported (RRR01)

\section*{Tree Representations}
0000000
0
0000
- 00

\section*{Tree Representations}

Data: n-node binary tree.

\section*{Tree Representations}

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).

\section*{Tree Representations}

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).
- Visit nodes in level-order and output 1 if internal node and 0 if external ( \(2 n+1\) bits) [Jacobson, FOCS '89]. Store sequence of bits as bit vector.


\section*{Tree Representations}

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).
- Visit nodes in level-order and output 1 if internal node and 0 if external ( \(2 n+1\) bits) [Jacobson, FOCS '89]. Store sequence of bits as bit vector.

- Number internal nodes by position of 1 in bit-string

\section*{Tree Representations}

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).
- Visit nodes in level-order and output 1 if internal node and 0 if external ( \(2 n+1\) bits) [Jacobson, FOCS '89]. Store sequence of bits as bit vector.

- Number internal nodes by position of 1 in bit-string
- Left child \(=2 * \operatorname{rank}_{1}(i)\).

\section*{Tree Representations}

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).
- Visit nodes in level-order and output 1 if internal node and 0 if external ( \(2 n+1\) bits) [Jacobson, FOCS '89]. Store sequence of bits as bit vector.

- Number internal nodes by position of 1 in bit-string
- Left child \(=2 * \operatorname{rank}_{1}(i)\). E.g. Left child of node \(7=7 * 2=\) 14. Right child \(=2 * \operatorname{rank}_{1}(i)+1\). parent \(=\operatorname{select}_{1}^{1}(\| i / 2 \mid)\)
0000000
0
0000

\section*{Tree Representations}

\section*{Tree Representations}
- "Optimal" representations of many kinds of trees e.g. ordinal trees (rooted arbitrary degree (un-)labelled trees, e.g. XML documents), tries.
- Wide range of \(O(1)\)-time operations, e.g.:
- ordinal trees in \(2 n+o(n)\) bits [Navarro, Sadakane, TALG'12].
0000000
0
0000

\section*{Tree Representations}
-

\section*{Pattern Matching - Compressed Text Indexing}

Pattern Matching - Compressed Text Indexing

Data: Sequence \(T\) ("text") of \(m\) symbols from alphabet of size \(\sigma\).
ITLB: \(n \log _{2} \sigma\) bits.
Operation: Given pattern \(P\), determine if \(P\) occurs (exactly) in \(T\) (and report the number of occurrences, starting positions etc).

\section*{Pattern Matching - Compressed Text Indexing}

Data: Sequence \(T\) ("text") of \(m\) symbols from alphabet of size \(\sigma\).
ITLB: \(n \log _{2} \sigma\) bits.
Operation: Given pattern \(P\), determine if \(P\) occurs (exactly) in \(T\) (and report the number of occurrences, starting positions etc).
- For a human genome sequence, \(m\) is about 3 billion \(\left(3 \times 10^{9}\right)\) characters, and \(\sigma=4\).

\section*{Pattern Matching - Compressed Text Indexing}

Data: Sequence \(T\) ("text") of \(m\) symbols from alphabet of size \(\sigma\).
ITLB: \(n \log _{2} \sigma\) bits.
Operation: Given pattern \(P\), determine if \(P\) occurs (exactly) in \(T\) (and report the number of occurrences, starting positions etc).
- For a human genome sequence, \(m\) is about 3 billion \(\left(3 \times 10^{9}\right)\) characters, and \(\sigma=4\).
- Standard data structure is suffix tree, which answers this query in \(O(|P|)\) time but takes \(O(n \log n)\) bits of space.
- In practice, a ST is about 10-30 times larger than the text.

\section*{Pattern Matching - Compressed Text Indexing}

Data: Sequence \(T\) ("text") of \(m\) symbols from alphabet of size \(\sigma\).
ITLB: \(n \log _{2} \sigma\) bits.
Operation: Given pattern \(P\), determine if \(P\) occurs (exactly) in \(T\) (and report the number of occurrences, starting positions etc).
- For a human genome sequence, \(m\) is about 3 billion \(\left(3 \times 10^{9}\right)\) characters, and \(\sigma=4\).
- Standard data structure is suffix tree, which answers this query in \(O(|P|)\) time but takes \(O(n \log n)\) bits of space.
- In practice, a ST is about 10-30 times larger than the text.
- A number of SDS have been developed: we'll focus on the FM-Index [Ferragina, Manzini, JACM '05].
0000000
-

\section*{Previous Popular Solution - Suffix Trees}

\section*{Suffix trie: making it smaller}


\section*{Suffix tree}
\(T=\) abaaba\$


With respect to \(m\) :
How many leaves? m
How many non-leaf nodes? \(\leq m-1\)
\(\leq 2 m-1\) nodes total, or \(O(m)\) nodes

Is the total size \(O(m)\) now?
No: total length of edge labels is quadratic in \(m\)

\section*{Suffix tree}
\(T=\) abaaba \(\$\)
Idea 2: Store \(T\) itself in addition to the tree. Convert tree's edge labels to (offset, length) pairs with respect to \(T\).


Space required for suffix tree is now \(O(m)\)

\section*{Suffix tree: leaves hold offsets}

0000000
-

\section*{Previous Popular Solution - Suffix Trees}

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.
- Each edge has a string, that can be represented by the starting and ending position of the substring in the text.

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.
- Each edge has a string, that can be represented by the starting and ending position of the substring in the text.
- Overall, naive implementation takes about \(4 n\) words or \(4 n \lg n\) bits.

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.
- Each edge has a string, that can be represented by the starting and ending position of the substring in the text.
- Overall, naive implementation takes about \(4 n\) words or \(4 n \lg n\) bits.
- Progress in succinct data structures has brought the space down to \(m \lg m+O(m)\) bits (in addition to the text).

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.
- Each edge has a string, that can be represented by the starting and ending position of the substring in the text.
- Overall, naive implementation takes about \(4 n\) words or \(4 n \lg n\) bits.
- Progress in succinct data structures has brought the space down to \(m \lg m+O(m)\) bits (in addition to the text).
- \(P\) exists in \(T\) if and only if \(P\) is a prefix of a suffix of \(T\). So, follow from the root matching \(P\). If success, the leaves in the entire subtree gives the list of occurrences.

\section*{Previous Popular Solution - Suffix Trees}
- A (compressed) trie containing all the suffixes of \(T\). The tree contains \(m+1\) leaves and at most \(m\) other nodes.
- Each leaf is labelled with the starting position of the suffix ending at that leaf.
- Each edge has a string, that can be represented by the starting and ending position of the substring in the text.
- Overall, naive implementation takes about \(4 n\) words or \(4 n \lg n\) bits.
- Progress in succinct data structures has brought the space down to \(m \lg m+O(m)\) bits (in addition to the text).
- \(P\) exists in \(T\) if and only if \(P\) is a prefix of a suffix of \(T\). So, follow from the root matching \(P\). If success, the leaves in the entire subtree gives the list of occurrences.
- \(O(n+o c c)\) to find all occurrences

\section*{Previous popular solution - Suffix Arrays}

\section*{Suffix array}
\[
\begin{aligned}
& T \$=\text { abaaba } \$ \longleftarrow \quad \begin{array}{l}
\text { As with suffix tree, } \\
T \text { is part of index }
\end{array}
\end{aligned}
\]

Suffix array of \(T\) is an array of integers in \([0, m]\) specifying the lexicographic order of \(T \$\) 's suffixes

\section*{Suffix array: querying}

Is \(P\) a substring of \(T\) ?
1. For \(P\) to be a substring, it must be a prefix of \(\geq 1\) of \(T\) 's suffixes
2. Suffixes sharing a prefix are consecutive in the suffix array

Use binary search
\begin{tabular}{|c|c|}
\hline 6 & \$ \\
\hline 5 & a \$ \\
\hline 2 & a a b a \$ \\
\hline 3 & a b a \$ \\
\hline 0 & a b a a b a \$ \\
\hline 4 & b a \$ \\
\hline 1 & b a a b a \$ \\
\hline
\end{tabular}

\section*{Suffix array: querying}

Is \(P\) a substring of \(T\) ?
Do binary search, check whether \(P\) is a prefix of the suffix there

How many times does \(P\) occur in \(T\) ?
Two binary searches yield the range of suffixes with \(P\) as prefix; size of range equals \# times \(P\) occurs in \(T\)

Worst-case time bound?
\(O\left(\log _{2} m\right.\) ) bisections, \(O(n)\) comparisons per bisection, so O( \(n \log m\) )
\begin{tabular}{|c|c|}
\hline 6 & \$ \\
\hline 5 & a \$ \\
\hline 2 & a a b a \$ \\
\hline 3 & a b a \$ \\
\hline 0 & a b a a b a \$ \\
\hline 4 & b a \$ \\
\hline 1 & b a a b a \$ \\
\hline
\end{tabular}

\section*{Previous popular solution - Suffix Arrays}

\section*{Previous popular solution - Suffix Arrays}
- A permutation of \(\{1,2, \ldots m\}\). \(S[i]\) is the starting position of the \(i\)-th suffix in the lexicographic order.

\section*{Previous popular solution - Suffix Arrays}
- A permutation of \(\{1,2, \ldots m\}\). \(S[i]\) is the starting position of the \(i\)-th suffix in the lexicographic order.
- Takes \(m \lg m\) bits.

\section*{Previous popular solution - Suffix Arrays}
- A permutation of \(\{1,2, \ldots m\}\). \(S[i]\) is the starting position of the \(i\)-th suffix in the lexicographic order.
- Takes \(m \lg m\) bits. Naive binary search takes \(O(n \lg m)\) time.

\section*{Previous popular solution - Suffix Arrays}
- A permutation of \(\{1,2, \ldots m\}\). \(S[i]\) is the starting position of the \(i\)-th suffix in the lexicographic order.
- Takes \(m \lg m\) bits. Naive binary search takes \(O(n \lg m)\) time.
- With what is called an LCP array taking another \(m \lg m\) bits, the search time can be brought down to \(O(n+\lg m)\) bits.

\section*{The FM-Index}

\section*{The FM-Index}

Based on the Burrows-Wheeler transform of the text \(T\).

\section*{Example: \(T=\) missisippi}
\begin{tabular}{ccccccccccc}
\(F\) & & & & & & & & \\
\(i\) & m & i & s & s & i & s & s & i & p & p \\
i & p & p & i & m & i & s & s & i & s & s \\
i & s & s & i & p & p & i & m & i & s & s \\
i & s & s & i & s & s & i & p & p & i & m \\
m & i & s & s & i & s & s & i & p & p & i \\
p & i & m & i & s & s & i & s & s & i & p \\
p & p & i & m & i & s & s & i & s & s & i \\
s & i & p & p & i & m & i & s & s & i & s \\
s & i & s & s & i & p & p & i & m & i & s \\
s & s & i & p & p & i & m & i & s & s & i \\
s & s & i & s & s & i & p & p & i & m & i
\end{tabular}
\(\operatorname{BWT}(T)=\) pssmipissii

\section*{Burrows-Wheeler Transform}

Text transform that is useful for compression \& search.

\section*{banana}
banana\$ \$banana
anana\$b a\$banan
nana\$ba sort ana\$ban
ana\$ban \(\longrightarrow\) anana\$b na\$bana banana\$
a\$banan nana\$ba
\$banana

\section*{BWT(banana) = annb\$aa}

Tends to put runs of the same character together.

Makes compression work well.
"bzip" is based on this.

\section*{Burrows-Wheeler Transform}

Reversible permutation of the characters of a string, used originally for compression


How is it useful for compression?
How is it reversible? How is it an index?

\section*{Burrows-Wheeler Transform}

BWM bears a resemblance to the suffix array
\begin{tabular}{|c|}
\hline \$ abaab \\
\hline \\
\hline aba \$ \\
\hline \\
\hline \\
\hline \\
\hline ab \\
\hline
\end{tabular}

BWM( T )


SA(T)

Sort order is the same whether rows are rotations or suffixes

\section*{Burrows-Wheeler Transform}

How to reverse the BWT?


BWM has a key property called the LF Mapping...

\section*{Burrows-Wheeler Transform: T-ranking}

Give each character in Ta rank, equal to \# times the character occurred previously in \(T\). Call this the \(T\)-ranking.

\section*{\(\mathbf{a}_{0} \mathbf{b}_{0} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{1} \mathbf{a}_{3} \boldsymbol{\$}\)}

Now let's re-write the BWM including ranks...

\section*{Burrows-Wheeler Transform}


Look at first and last columns, called \(F\) and \(L\)
And look at just the as
as occur in the same order in \(F\) and \(L\). As we look down columns, in both cases we see: \(\mathbf{a}_{3}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{0}\)

\section*{Burrows-Wheeler Transform}


Same with \(\mathbf{b}_{\mathrm{s}}: \mathbf{b}_{1}, \mathbf{b}_{0}\)

\section*{Burrows-Wheeler Transform: LF Mapping}
\begin{tabular}{lclllll} 
& \(F\) & & & & \(L\) \\
BWM with T-ranking: & \(\mathbf{\$}\) & \(\mathbf{a}_{0}\) & \(\mathbf{b}_{0}\) & \(\mathbf{a}_{1}\) & \(\mathbf{a}_{2}\) & \(\mathbf{b}_{1}\)
\end{tabular} \(\mathbf{a}_{3}\),

LF Mapping: The \(i^{\text {th }}\) occurrence of a character \(c\) in \(L\) and the \(i^{\text {th }}\) occurrence of \(c\) in \(F\) correspond to the same occurrence in \(T\)

However we rank occurrences of \(c\), ranks appear in the same order in \(F\) and \(L\)

\section*{Burrows-Wheeler Transform: LF Mapping}

Why does the LF Mapping hold?
\begin{tabular}{|c|c|}
\hline & \$ \(\mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a}_{3}\) \\
\hline \multirow[t]{7}{*}{Why are these as in this order relative to each other?} & \(\mathbf{a}_{3}\) \$ a bla a bl \\
\hline & a bata a \(\mathbf{b}_{0}\) \\
\hline & ba \$ a b a \(\mathbf{1}_{1}\) \\
\hline & \(a_{0}\) ba a ba \$ \\
\hline & \(\mathbf{b}_{1} \mathbf{a} \$ \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{a}_{2}\) \\
\hline & \(\mathbf{b}_{0} \mathbf{a} \mathbf{a} \mathbf{b} \mathbf{a} \$ \mathbf{a}_{0}\) \\
\hline & They're sorted by right-context \\
\hline
\end{tabular}


Occurrences of \(c\) in \(F\) are sorted by right-context. Same for \(L\) !
Whatever ranking we give to characters in \(T\), rank orders in \(F\) and \(L\) will match

\section*{Burrows-Wheeler Transform: LF Mapping}

BWM with T-ranking:
\begin{tabular}{llllll}
\(F\) & & & & \(L\) \\
\(\mathbf{\$}\) & \(\mathbf{a}_{0}\) & \(\mathbf{b}_{0}\) & \(\mathbf{a}_{1}\) & \(\mathbf{a}_{2}\) & \(\mathbf{b}_{1}\) \\
\(\mathbf{a}_{3}\) \\
\(\mathbf{a}_{3}\) & \(\mathbf{\$}\) & \(\mathbf{a}_{0}\) & \(\mathbf{b}_{0}\) & \(\mathbf{a}_{1}\) & \(\mathbf{a}_{2}\)
\end{tabular} \(\mathbf{b}_{1}\)

We'd like a different ranking so that for a given character, ranks are in ascending order as we look down the F / L columns...

\section*{Burrows-Wheeler Transform: LF Mapping}

BWM with B-ranking:


F now has very simple structure: a \(\mathbf{\$}\), a block of as with ascending ranks, a block of \(\mathbf{b}\) s with ascending ranks

\section*{Burrows-Wheeler Transform}
\begin{tabular}{|c|c|c|}
\hline \(F\) & L & \\
\hline \$ & \(\mathbf{a}_{0}\) & \\
\hline \(\mathrm{a}_{0}\) & \(\mathrm{b}_{0}\) & \\
\hline \(\mathbf{a}_{1}\) & & Which BWM row begins with \(\mathbf{b}_{1}\) ? \\
\hline \(\mathrm{a}_{2}\) & \(\mathbf{a}_{1}\) & Skip row starting with \$ (1 row) \\
\hline \(\mathrm{a}_{3}\) & \$ & Skip rows starting with \(\mathbf{a}\) (4 rows) \\
\hline & & Skip row starting with \(\mathbf{b}_{0}\) (1 row) \\
\hline \(\mathrm{b}_{0}\) & \(\mathbf{a}_{2}\) & Answer: row 6 \\
\hline row \(6 \rightarrow \mathbf{b}_{1}\) & \(\mathbf{a}_{3}\) & \\
\hline
\end{tabular}

\section*{Burrows-Wheeler Transform}
```

Say T has 300 As,400 Cs, 250 Gs and 700 Ts and \$ < A < C < G < T
Which BWM row (0-based) begins with G}\mp@subsup{\mathbf{G}}{100}{}\mathrm{ ? (Ranks are B-ranks.)
Skip row starting with \$ (1 row)
Skip rows starting with A (300 rows)
Skip rows starting with C (400 rows)
Skip first 100 rows starting with G (100 rows)
Answer: row 1+300+400+100=row 801

```

\section*{Burrows-Wheeler Transform: reversing}

Reverse BWT(T) starting at right-hand-side of \(T\) and moving left

Start in first row. F must have \(\mathbf{\$}\). \(L\) contains character just prior to \$: \(\mathbf{a}_{0}\)
\(\mathbf{a}_{0}\) : LF Mapping says this is same occurrence of a as first \(\mathbf{a}\) in \(F\). Jump to row beginning with \(\mathbf{a}_{0}\). \(L\) contains character just prior to \(\mathbf{a}_{0}\) : \(\mathbf{b}_{0}\).

Repeat for \(\mathbf{b}_{0}\) get \(\mathbf{a}_{2}\)
Repeat for \(\mathbf{a}_{2}\), get \(\mathbf{a}_{1}\)
Repeat for \(\mathbf{a}_{1}\), get \(\mathbf{b}_{1}\)


Repeat for \(\mathbf{b}_{1}\), get \(\mathbf{a}_{3}\)
Repeat for \(\mathbf{a}_{3}\), get \(\mathbf{\$}\), done
Reverse of chars we visited \(=\mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \boldsymbol{\$}=T\)

\section*{Burrows-Wheeler Transform: reversing}

Another way to visualize reversing \(\operatorname{BWT}(T)\) :

\(T: \mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \mathbf{\$}\)

\section*{Burrows-Wheeler Transform}

We've seen how BWT is useful for compression:
Sorts characters by right-context, making a more compressible string

And how it's reversible:
Repeated applications of LF Mapping, recreating \(T\) from right to left

How is it used as an index?

\section*{FM Index}

FM Index: an index combining the BWT with a few small auxilliary data structures
"FM" supposedly stands for "Full-text Minute-space." (But inventors are named Ferragina and Manzini)

Core of index consists of \(F\) and \(L\) from BWM:
\(F\) can be represented very simply
(1 integer per alphabet character)
And \(L\) is compressible
Potentially very space-economical!

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data


\section*{FM Index: querying}

Though BWM is related to suffix array, we can't query it the same way


We don't have these columns; binary search isn't possible

\section*{FM Index: querying}

Look for range of rows of BWM(T) with \(P\) as prefix
Do this for P's shortest suffix, then extend to successively longer suffixes until range becomes empty or we've exhausted \(P\)
\[
P=\mathbf{a b a}
\]


\section*{FM Index: querying}

We have rows beginning with \(\mathbf{a}\), now we seek rows beginning with ba


Now we have the rows with prefix ba

\section*{FM Index: querying}

We have rows beginning with ba, now we seek rows beginning with aba


Now we have the rows with prefix aba

\section*{FM Index: querying}


\section*{FM Index: querying}

When \(P\) does not occur in \(T\), we will eventually fail to find the next character in \(L\) :
\[
\begin{aligned}
& P=\mathbf{b} \mathbf{b} \mathbf{a} \\
& F \quad L \\
& \text { \$ a b a a b a } \mathbf{a}_{0} \\
& \mathbf{a}_{0} \$ \mathrm{a} \mathrm{~b} \text { a a } \mathbf{b}_{0} \\
& \mathbf{a}_{1} \text { a bas a } \mathbf{b}_{1} \\
& \mathbf{a}_{2} \mathrm{~b} \text { a } \$ \mathrm{a} \text { b } \mathbf{a}_{1} \\
& \mathbf{a}_{3} \mathrm{~b} \text { a a b a } \$ \\
& \text { Rows with ba prefix } \left.\begin{array}{|c|c|ccc}
\begin{array}{l}
\mathbf{b}_{0} \\
\mathbf{b}_{1}
\end{array} & \$ \text { a } & \text { b a } & \mathbf{a}_{2} \\
\mathbf{b}_{1} & \text { a } & \text { b a a } & \$ \mathbf{a}_{3}
\end{array}\right] \leftarrow \text { No } \mathbf{b} \text { ! }
\end{aligned}
\]

\section*{FM Index: querying}

If we scan characters in the last column, that can be very slow, \(O(m)\)
\[

\]

\section*{FM Index: lingering issues}
(2) Storing ranks takes too much space
(1) Scanning for preceding character is slow
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\$ a b a a b \(\mathbf{a}_{0}\)} \\
\hline \multicolumn{3}{|l|}{\(\mathbf{a}_{0} \$ \mathrm{a} \mathrm{lb}\) a a \(\mathbf{b}_{0}\)} \\
\hline \(\mathbf{a}_{1}\) & a ba \$ a \(\mathbf{b}_{1}\) & \(O(m)\) \\
\hline \(\mathbf{a}_{2}\) & b a \$ a b \(\mathbf{a}_{1}\) & scan \\
\hline \(\mathrm{a}_{3}\) & b a a b a \$ & \\
\hline \(\mathrm{b}_{0}\) & a \$ a b a \(\mathbf{a}_{2}\) & \\
\hline & a a b a \$ \(\mathbf{a}_{3}\) & \\
\hline
\end{tabular}
(3) Need way to find where matches occur in \(T\) :


\section*{FM Index: resolving offsets}

Idea: store some, but not all, entries of the suffix array


Lookup for row 4 succeeds - we kept that entry of SA
Lookup for row 3 fails - we discarded that entry of SA

\section*{FM Index: resolving offsets}

But LF Mapping tells us that the a at the end of row 3 corresponds to... ...the a at the begining of row 2


And row 2 has a suffix array value \(=2\)
So row 3 has suffix array value = 3 = 2 (row 2's SA val) +1 (\# steps to row 2)
If saved SA values are \(O(1)\) positions apart in \(T\), resolving offset is \(\mathrm{O}(1)\) time

\section*{FM Index: problems solved}

Solved!
At the expense of adding some SA values \((O(m)\) integers) to index Call this the "SA sample"
(3) Need a way to find where these occurrences are in \(T\) :
\begin{tabular}{|c|}
\hline \$ a b a a b \(\mathbf{a}_{0}\) \\
\hline \(\mathbf{a}_{0}\) \$ a b a a \(\mathbf{b}_{0}\) \\
\hline \(\mathbf{a}_{1} \mathrm{abba}\) \$ a \(\mathbf{b}_{1}\) \\
\hline \(\mathbf{a}_{2} \mathrm{~b}\) a \(\mathrm{a}_{3} \mathrm{a}\) b \(\mathbf{a}_{1}\) \\
\hline \(\mathbf{a}_{3} \mathrm{~b}\) a a \\
\hline \\
\hline \\
\hline
\end{tabular}

With SA sample we can do this in \(O(1)\) time per occurrence
0000000
0
0000
000
000000

\section*{To Summarize (FM index)}

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)
can be determined in \(O(n)\) time using

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)
can be determined in \(O(n)\) time using
- \(m \lg \sigma\) bits, for BWT (last column)
- o( \(m \lg \sigma\) ) bits for rank
- \(\sigma \lg m\) bits for count of each character (first column)

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)
can be determined in \(O(n)\) time using
- \(m \lg \sigma\) bits, for BWT (last column)
- o( \(m \lg \sigma)\) bits for rank
- \(\sigma \lg m\) bits for count of each character (first column) and the position of all occurrences of \(P\) in \(T\) can be determined in

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)
can be determined in \(O(n)\) time using
- \(m \lg \sigma\) bits, for BWT (last column)
- \(o(m \lg \sigma)\) bits for rank
- \(\sigma \lg m\) bits for count of each character (first column)
and the position of all occurrences of \(P\) in \(T\) can be determined in
- additional \(O\) ( \(k\) occ) time, using
- an additional \((m \lg m) / k\) bits of space (using a sampled suffix array)

\section*{To Summarize (FM index)}
- Existence of \(P\) in \(T\), and
- the number of occurrences (occ) of \(P\) in \(T\)
can be determined in \(O(n)\) time using
- \(m \lg \sigma\) bits, for BWT (last column)
- \(o(m \lg \sigma)\) bits for rank
- \(\sigma \lg m\) bits for count of each character (first column)
and the position of all occurrences of \(P\) in \(T\) can be determined in
- additional \(O\) ( \(k\) occ) time, using
- an additional \((m \lg m) / k\) bits of space (using a sampled suffix array)
- For example, \(O(\) occ \(\lg m)\) time using additional \(O(m)\) bits of space.

\section*{Contrasting with Suffix Arrays and Suffix Trees}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
FM \\
Index
\end{tabular} & \begin{tabular}{l}
\(O(m \lg \sigma)\) bits \\
\(1.5 G B\) for \\
human genome
\end{tabular} & \begin{tabular}{l}
\(O(n)\) time for \\
finding existence and occ \\
\(O(n+\) occ \(\lg m)\) for finding \\
all occurrences
\end{tabular} \\
\hline \begin{tabular}{l} 
Suffix \\
Array
\end{tabular} & \begin{tabular}{l}
\(2 m \lg m\) bits + text \\
about \(12 G B\) for \\
human genome
\end{tabular} & \begin{tabular}{l}
\(O(n+\lg m)\) time for \\
all operations
\end{tabular} \\
\hline \begin{tabular}{l} 
Suffix \\
Tree
\end{tabular} & \begin{tabular}{l}
\(3 m \lg m\) bits + text \\
about 47 \(G B\) in MUMmer \\
for human genome; \\
with optimization \\
\((m \lg m+O(m)\) bits \()\)
\end{tabular} & \begin{tabular}{l}
\(O(n)\) time for \\
boolean query \\
\(O(n+\) occ \()\) for finding \\
all occurrences \\
useful for many other \\
operations
\end{tabular} \\
\hline
\end{tabular}

\section*{Introduction}

\section*{Data Structures}

\section*{Goals}

Bit Vectors
Strings from a larger alphabet
Sparse Bit Vectors
Trees
Burrows-Wheeler Transform and Indexing

Libraries

Conclusions


\section*{Libraries}
- A number of good implementations of succinct data structures in \(\mathrm{C}++\) are available.
- Different platforms, coding styles:
- sdsl-lite (Gog, Petri et al. U. Melbourne).
- succinct (Grossi and Ottaviano, U. Pisa).
- Sux4J (Vigna, U. Milan, Java).
- LIBCDS (Claude and Navarro, Akori and U. Chile).
- All open-source and available as Git repositories.

\section*{Conclusions}
- SDS are a relatively mature field in terms of breadth of problems considered.

\section*{Conclusions}
- SDS are a relatively mature field in terms of breadth of problems considered.
- Quite practical; FM index has been implemented in BIO software (Bowtie).

\section*{Conclusions}
- SDS are a relatively mature field in terms of breadth of problems considered.
- Quite practical; FM index has been implemented in BIO software (Bowtie).
- Some foundational questions still not addressed (e.g. lower bounds). at least in dynamic SDS.

\section*{Thank You}

Thank You
Special thanks to Rajeev Raman (Leicester University) and Ben Langmead (Johns Hopkins) for some of the slides```

