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Geometric Covering problems

Motivated by the applications in VLSI design, and motion planning,
geometric covering problems have been studied extensively.

One has to cover geometric objects (e.g., points, lines, disks, squares
or rectangles) with other geometric objects, satisfying some
optimization requirements.
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Motivation

Applications in VLSI

Minimize the length of the wire used
Reduce the number of links(bends) in a path connecting two points in
the board

Most of the covering problems are NP-hard even in rectilinear
domains(lines/line-segments parallel to x-axis or y -axis)1

1Jianxin Wang, Jinyi Yao, Qilong Feng, and Jianer Chen.Improved fpt algorithms for
rectilinear k-links spanning path.In International Conference on Theory and Applications
of Models of Computation, Springer,2012
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Corridor Guarding problems

Minimum corridor guarding problems (CMST/CTSP)

Minimum link CTSP

Minimum corridor connection problems
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Minimum corridor guarding problems 3

Input: Connected orthogonal arrangement of line-segments
Output: An optimal tree/closed walk, such that if a guard moves
through the tree/closed walk, all the line-segments are visited2 by the
guard.

If the guarding walk is a tree/closed walk, then the problem is
referred to as Corridor-MST/Corridor-TSP(CMST/CTSP)

Decision version of CMST/CTSP is proved to be NP-Complete.

2a line-segment l is said to be visited by a tree/walk, if any of the vertices in the
tree/walk is incident to one of the endpoints or intersection points created by l with
other line-segments

3Ning Xu.Complexity of minimum corridor guarding problems.Information Processing
Letters, 2012.
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Minimum corridor guarding problems

(a) (b) (c)

Figure: (a) represents input instance of CMST and CTSP. Red lines in (b) and (c)
represent the tree and closed walk respectively
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Minimum link CTSP

Given an orthogonal connected arrangement L of line-segments, find a
minimum link-distance closed walk visiting all the line-segments.

Link-distance is the number of links or turns in a path/walk.

(a) (b) (c)

Figure: Input and Output Instances of MLC.
(a) The input arrangement of line-segments.
(b) closed walk in (a) with link-distance four(ac , ch, hf , and fa are the links)
(c) closed walk in (a) with six link-distance (ac , ce1, e1d , dg , gf and fa are the
links) respectively.
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Minimum corridor connection problems 4

Given a rectilinear polygon partitioned into rectilinear components or
rooms, MCC asks for a minimum length tree along the edges of the
partitions, such that every room is incident to at least one vertex of
the tree.

Decision version of the problem is shown to be NP-complete.

(a) (b)

Figure: Input and Output instances of MCC. (a) Rectilinear polygon partitioned
into rooms. In (b) the red lines represent a minimal tree visiting all rooms

4Hans L Bodlaender et al.On the minimum corridor connection problem and other
generalized geometric problems.Computational Geometry, 42(9), 2009.
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Parameterized Complexity 5

A framework for solving NP-hard problems by measuring their time in
terms of one or more parameters, in addition to the input size.

A problem with input instance of size n, and with a non-negative
integer parameter k , is fixed-parameter tractable(FPT), if it can be
solved by an algorithm that runs in O(f (k).nc)-time, where f is a
computable function depending only on k , and c is a constant
independent of k .

5Rolf Niedermeier.Invitation to fixed-parameter algorithms.2006
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k-CMST/k-CTSP(k-Corridor-MST/k-Corridor-TSP)

Input: A connected arrangement of line-segments (corridors) L =
{L1, L2, . . . , Ln}, and an integer k
Parameter: k
Output: A minimum length tree/closed walk on at most k vertices,
along the edges of the corridor, such that all the line-segments are vis-
ited.

(a) (b) (c)

Figure: Red lines in (b) shows tree with k=4 and Red lines in (c) shows closed
walk with k = 6 for input instance (a)
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An FPT algorithm for k-CMST/k-CTSP

Input : Orthogonal Arrangement of line-segments

Segment Vertices Vs = { a, b, c . . . o} and Segment Edges
Es = { am, bn, co, od , gf , lk ,mn, no, kj , ji ,mk , nj , oi , gh, ig}
Isolated segment edges Eis = { am, bn, co, od , gf , lk}
Segment bounding rectangle: Rectangle formed by the set of topmost
and bottommost horizontal line-segments , and leftmost and
rightmost vertical line-segments when two or more horizontal(vertical)
line-segments is intersected by three or more vertical(horizontal)
line-segments. ( [mo, oi , ik , km] in the figure).
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An FPT algorithm for k-CMST/k-CTSP

Preprocess the input instance

Remove isolated-segment
edges if any.
Remove those line segments
which have both their
end-points in the boundary of
a segment-bounding
rectangle, if any.

Parameter k is decreased by
the number of line-segments
removed. The updated
parameter is referred to as l .
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An FPT algorithm for k-CMST/k-CTSP

Transform the preprocessed
instance to graph instance Gls .

The segment vertices and
edges of the preprocessed
instance is transformed into
vertices and edges of the
graph Gls .
Length of the segment-edges
are assigned as the weights of
the corresponding edges in
the graph.

Find l-Tree cover and l-Tour
cover of the graph instance
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l -Tree cover/l -Tour cover (Weighted connected vertex
cover)

Input : A graph G = (V ,E ,w) where w : E ! IR+,
an integer l � 0. Parameter : l , Number of vertices in the output
tree/closed walk
Output: A minimal Tree/closed walk T = (V

0
,E

0
) of G with V

0 ✓ V
and E

0 ✓ E , |V 0 |  l and V
0
is a vertex cover for G .

Both l-Tree Cover and l-Tour Cover were shown to be FPT.

Figure: Red lines in (b) shows tree-cover with k=4 for graph in (a).
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FPT result of k-CMST/k-CTSP

Lemma

l-Tree Cover and l-Tour Cover can be solved in O((2l)l) and
O((4l)l)-time, respectively.a

aJiong Guo, Rolf Niedermeier, and Sebastian Wernicke.Parameterized
complexity of generalized vertex cover problems.In Workshop on Algorithms and
Data Structures, pages 3648. Springer, 2005.

Lemma

k-CMST/k-CTSP on an input instance (L
0
, l) is an YES-instance i↵ l-Tree

Cover/l-Tour Cover in its corresponding Gls has an YES-instance.

Theorem
k-CMST and k-CTSP on an arrangement L is FPT with a run-time of
O⇤(2kk) and O⇤(4kk) respectively.
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An improved FPT algorithm for k-CMST/k-CTSP

Consider the geometric instance.

Uses a search tree which starts with a segment-vertex with
segment-degree � 2.

Each node has 4 branches, and each branch selects one segment edge.

Branching is performed until all the line-segments in the arrangement
are visited, S is a tree/closed walk and k � 0.
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An improved FPT algorithm for k-CMST/k-CTSP

(a)

(b)

Figure: m is the start vertex. m � k � j � i � g and m � n � o � i � g are two
trees with k = 5 vertices
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An improved FPT algorithm for k-CMST/k-CTSP

Initially, if we select a vertex which is not part of the tree/closed walk,
the branching algorithm may return a NO, even when the input is a
YES instance.

Lemma

If there is line-segment l in L intersected by more than k line-segments,
then the instance (L, k) is a NO instance for k-CMST. If l is intersected by
more than k/2 line-segments, then the instance is a NO instance for
k-CTSP.

Figure: For k < 4 k-CMST returns a NO, and for k < 8 k-CTSP returns a NO
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An improved FPT algorithm for k-CMST/k-CTSP

Corollary

The maximum intersections possible for a line-segment l in a YES instance
of k-CMST is k , and k/2 for k-CTSP.

The algorithm is invoked for a maximum of k times for k-CMST and
k/2 times for k-CTSP (Maximum number of intersections is k and
k/2 respectively).

Running time : O*(k .4k)

Theorem

There is an O⇤(k .4k)-time algorithm for k-CMST and O⇤((k/2).4k)-time
algorithm for k-CTSP. Consequently, these problems are FPT.
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b-MLC (b-Minimum link Corridor-TSP)

Input: A connected arrangement of line-segments (corridors) L =
{L1, L2, . . . , Ln} with bounded number of intersections m for every line-
segment in L & an integer b
Parameter: b
Output: A minimum length closed walk on at most b link-distance along
the edges of the corridor, such that all the line-segments are visited.

(a) (b)

Figure: Red lines in (c) shows closed walk with b = 4 for input instance (a)
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Hardness result of b-MLC

Theorem
b-MLC is NP-complete.

Candidate problem: Point covering rectilinear tour of b links or b link
point-tour.
Input: A set of n points in a plane
Question: Is there a rectilinear tour of at most b link-distance which
covers all the points?

b-link point tour is proven to be NP-Complete6.

6Jianxin Wang, Jinyi Yao, Qilong Feng, and Jianer Chen.Improved fpt algorithms for
rectilinear k-links spanning path.In International Conference on Theory and Applications
of Models of Computation, pages 560571. Springer,2012
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Hardness result of b-MLC

Figure: Example of reduction from point covering by a b-link tour to b-MLC.

Enclose the points in a rectangular bounding box and build an
orthogonal line arrangement of the points.

The endpoints in the line-segments of b-MLC is either one of the
original n points, or the intersection points made by the lines with the
bounding box.
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Hardness result of b-MLC

Figure: Example of reduction from point covering by a b-link tour to b-MLC.

Every point in the input of point covering corresponds to four line-segments
in b-MLC.

It is obvious from the construction, that each of the line-segments share one
of its endpoints with at least one of the n points.

So, if there is a b-link tour connecting the n points, then there is a closed
walk visiting all 4n line-segments with at most b link-distance.

The decision version of the problem is in NP, the verifying algorithms checks
if a sequence of line-segments forms a closed walk, visits all the
line-segments, and has at most b link-distance.

b-MLC is NP-Complete.
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An FPT algorithm for b-MLC

Uses a search tree

Each node has 4(m+1) branches where m is the bound in number of
intersections in one line-segment, and each branch selects one link.

Branching is performed until all the line-segments in the arrangement
are visited, S is a closed walk and b � 0.

Initially, if we select a vertex which is not part of the closed walk, the
branching algorithm may return a NO, even when the input is a YES
instance.

R Subashini (NITC) FPT algorithms:Corridor Guarding problems 25 / 43



An FPT algorithm for b-MLC

The maximum number of intersections for a line-segment in the figure
is 4.

Suppose we start with the vertex l , the possible links are lk , lj , li , lg ,
and lf .

If we start with m, one of the solutions is m � o � i � g with 3
link-distance.
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An FPT algorithm for b-MLC

The algorithm is invoked for a maximum of m times since the
maximum bound on intersection is m.

Running time : O(m.(4(m + 1))b)
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k-MCC (k-Minimum Corridor Connection)

Input: A rectilinear polygon P partitioned into {P1,P2, . . . ,Pk} recti-
linear components or rooms.
Parameter: k , The number of partitions or rooms.
Output: A minimum length tree along the edges of the partitions such
that all k rooms are visited.7

(a) (b)

Figure: Red lines in (b) shows tree with k=4 for the input in (a).

7A room is said to be visited by a tree when it is incident to one of the vertices of
the tree.
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An FPT algorithm for k-MCC

Transform the input instance to a graph instance where the vertices are
divided as k groups of terminals.

Corresponding to each of the
partitions {P1,P2, . . . ,Pk} in
P , group of terminals
S1, S2, . . . , Sk in Gpd is created.

Edge weights in Gpd are added
corresponding to the length of
the line-segments in the
partitions of P .

The dotted lines corresponds to
the 0 weight edges which are
added between vertices shared
by partitions.
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FPT algorithm for k-edgewt-Group Steiner tree

In Gpd , find a group Steiner tree visiting all k groups.

k-edgewt-GST
Input: A connected undirected graph G = (V ,E ,w) where w : E ! IR+,
vertex-disjoint subsets {S1, S2, . . . , Sk} where each Si ✓ V 8 1  i  k .
Parameter: k
Output: A minimal tree in G that includes at least one vertex from each
Si 8 1  i  k .
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FPT algorithm for k-edgewt-Group Steiner tree

Reduce k-edgewt-GST to k-edgewt-DST.
k-edgewt-DST
Input: A Directed graph G 0 = (V 0, E 0, w 0) where w

0
: E

0 ! IR+, a
distinguished vertex r 2 V , a set of terminals S ✓ V where |S | = k .
Parameter: k
Output: A minimal out-tree in G 0 that is rooted at r and that
contains all the vertices of S .

Lemma

k-edgewt-GST has a parameter preserving reduction to k-edgewt-DST.
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Transformation of instance from weighted GST in G to
weighted DST

Additional k+1 vertices
{s1, s2, . . . , sk , r} are included in
DST instance.

For each edge (u, v) in G , edges
(u, v) and (v , u) with the same
edge weights is added in D.

An arc of length 1 is added from r
to all vertices in Si .

An arc of length 1 is added from

vertices of Si to corresponding si ,

8 1  i  k .
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Transformation of instance from weighted GST in G to
weighted DST

If G contains a tree T with minimal edge-weight m that includes at
least one vertex from each Si , then this tree with the same weight m
is also contained in D which can be accessed from r using one of the
(r , u) arc for some u 2 V .

Thus we have a directed out-tree with edge-weight (m + k + 1)
containing r and all vertices in S .

Also, if any one of the group Si is omitted, then T must omit si .

Thus, there is a parameterized preserving reduction from
k-edgewt-GST to k-edgewt-DST.
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k-MCC

Theorem

There is a O⇤(2O(klogk))-time algorithm for k-edgewt-DST.a

aFedor V Fomin, Fabrizio Grandoni, Dieter Kratsch, Daniel Lokshtanov, and
Saket Saurabh.Computing optimal steiner trees in polynomial
space.Algorithmica, 2013

Theorem

k-MCC is solved in O⇤(2O(klogk))-time. Consequently, it is FPT.
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Summary

Problem Complexity Status FPT results

k-CMST
NP-Complete [Xu12] O*(2kk),

O⇤ (k(4k))

k-CTSP
NP-Complete [Xu12] O*(4kk) ,

O⇤((k/2)4k)

b-MLC
NP-Complete O*(m(4(m + 1))b)

k-MCC
NP-Complete[BFG+09] O*(2klogk)
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Future work

To incorporate an option of visibility of rooms, in addition to the
notion of visiting rooms.

Figure: Notion of visibility: x and y is not visible to each other since the
line-segment xy is not completely inside the polygon

Another direction of work related to MLC problem is finding a tree
with minimum number of links or link-diameter(maximum
link-distance between any two points in the tree.)
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