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The Longest Path and Cycle problems

Longest Path

Input: A graph G and a positive integer k.

Task: Decide whether G contains a path with (at least) k
vertices.

Longest Cycle

Input: A graph G and a positive integer k.

Task: Decide whether G contains a cycle with at least k
vertices.
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Some History (Longest Path)

Reference Randomized Deterministic
Monien85 - O(k!nm)

Bodlaender - O(k!2kn)
Alon, Y and Z O(5.44kn) O(ckn log n) for a large c

Huffner, W, and Z O(4.32km)

Kneis, M, R, and R O∗(4k) O∗(16k)

Chen, L, S, and Z O(4kk2.7m) 4k+O(log3 k)nm
Koutis O∗(2.83k) -

Williams O∗(2k) -
Bjorklund, H, K, and K O∗(1.66k) -

Fomin, L, and S - O(2.851kn log2 n)
F, L, P, and S - O(2.619kn log n)

Zehavi O∗(2.5961k)



Puzzle

1 Assume that you have an oracle A that can test whether
there is a cycle of length ` in an undirected graph G in time
O∗(2`).

2 Can you use A to solve Longest Cycle in time O∗(2O(k)).



Puzzle

1 Assume that you have an oracle A that can test whether
there is a cycle of length ` in an undirected graph G in time
O∗(2`).

2 Can you use A to solve Longest Cycle in time O∗(2O(k)).



The Longest Path and Cycle problems

Theorem (Zehavi, 2015, 2017)

Longest Path and Longest Cycle can be solved in times
2.59606k · nO(1) and 4k · nO(1) (randomized) respectively.

Longest Cycle can be solved deterministically in time
4.884k · nO(1) respectively.
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Above Guarantee Parameterization

Finding Detours is FPT
Ivona Bezáková

Radu Curticapean
Holger Dell
Fedor Fomin



s t
shortest path
length d(s,t)

“detour”
length d(s,t)+k

linear time

NP-hard

Our result: FPT



Is there a path from s to t of length...

≤ k ?

= k ?

≥ k ?

→ Shortest Path

→ Exact Path

→ Longest Path

Observation: Algorithms bad when k < d(s,t) ∼ n0.1

randomized time O*(1.657k)
[Björklund, Husfeldt, Kaski, Koivisto 2010]

deterministic time O*(2.597k)
[Zehavi 2015]



Detour = “Above guarantee” Longest Path

Is there a path from s to t of length...

= d(s,t) + k ?

≥ d(s,t) + k ?

→ Exact Detour

→ Detour

Our result: Both variants are FPT



Actual talk will be:

Longest Path and Cycle Above Degeneracy



Degeneracy and paths (cycles)

A graph G is d-degenerate if every subgraph H of G has a vertex
of degree at most d, that is, the minimum degree δ(H) ≤ d.

The degeneracy of graph G, also known as the coloring number,
is

dg(G) = max{δ(H) | H is a subgraph of G}.
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Degeneracy and paths (cycles)

Exercise: Show that a graph of minimum degree at least d
contains a path with at least d + 1 vertices.

Exercise: Show that a graph of minimum degree at least d ≥ 2
contains a cycle with at least d + 1 vertices.

Proposition

A graph G of degeneracy d contains a path with at least d + 1
vertices. If d ≥ 2, then G contains a cycle with at least d + 1
vertices.
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Longest Path and Cycle Above Degeneracy

Longest Path Above Degeneracy

Input: A graph G and a positive integer k.

Task: Decide whether G contains a path with (at least)
dg(G) + k vertices.

Longest Cycle Above Degeneracy

Input: A graph G and a positive integer k.

Task: Decide whether G contains a cycle with at least
dg(G) + k vertices.
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Longest Path and Cycle Above Degeneracy

Proposition

Longest Path Above Degeneracy and Longest Cycle Above
Degeneracy are NP-complete for k = 2. Moreover, the NP-hardness
result for Longest Cycle Above Degeneracy holds for connected
graphs.

n-vertex G Kn−1
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Longest Path and Cycle Above Degeneracy

Theorem

Longest Path Above Degeneracy can be solved in time 2O(k) · nO(1)

for connected graphs.

Theorem

Longest Cycle Above Degeneracy can be solved in time 2O(k) · nO(1)

for 2-connected graphs.
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the known results for Longest Path.
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Cores and paths

A d-core of G is an inclusion maximal induced connected
subgraph H with δ(H) ≥ d.

Every graph of degeneracy at least d contains a d-core that can
be found in linear time

Theorem (Erdös and Gallai, 1959)

Every connected n-vertex graph G contains a path with at least
min{2δ(G) + 1,n} vertices.

Let H be a d-core of G.

If |V(H)| ≥ d + k, then H contains a path on d + k vertices.

Assume from now that |V(H)| < d + k.
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Cores and paths

Recall that d = δ(H) ≥ 5k and d + 1 ≤ |V(H)| < d + k.

In particular, every vertex of H has at most k− 2 non-neighbors.

Let {s1, t1}, . . . , {sr, tr}, r ≤ k, be a collection of pairs of vertices
of H such that

si 6= tj for all i 6= j, i, j ∈ {1, . . . , r},
si 6= sj for all i 6= j, i, j ∈ {1, . . . , r}, and

there is at least one index i ∈ {1, . . . , r} such that si 6= ti.

Claim: There is a family of pairwise vertex-disjoint paths
P = {P1, . . . , Pr} in H such that each Pi is an (si, ti)-path and
∪r

i=1V(Pi) = V(H), that is, the paths cover all vertices of H.
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H

s1 t1 sr tr



Cores and paths

≥ 2k + 2

t1 sr tr

H

s1



Cores and paths

≤ 3k
t1 sr tr

H

s1

≥ 2k + 1



Cores and paths

> 3k
t1 sr tr

H

s1



Cores and paths

Claim: If G has a path with d + k vertices, then G has a path P
with d + k vertices such that V(H) ⊆ V(P) and at least one
end-vertex of P is outside H.

p = d + k− |V(H)|

H
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Cores and paths
Claim: If G has a family of internally vertex disjoint paths s.t.

there are at least one and at most two paths that have its
one end-vertex outside V(H) and the second in V(H), and
the other paths have their end-vertices in V(H),
the union of the paths is a linear forest such that if two
paths have end-vertices outside V(H), then they are in
distinct component of the forest,
the total number of internal vertices is p = d + k− |V(H)|,

then G has a path with d + k vertices.

p = d + k− |V(H)|

H
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Cores and cycles

Claim: If G has a cycle with at least d + k vertices, then G has a
cycle C with d + k vertices such that V(H) ⊆ V(C).
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Cores and cycles

H

≥ p = d + k− |V(H)|



Cores and cycles

≤ 2p− 2

H



Tightness of the bound

Proposition

For any ε > 0, it is NP-complete to decide whether a connected
graph G contains a path with at least (1 + ε)dg(G) vertices and it
is NP-complete to decide whether a 2-connected graph G contains
a cycle with at least (1 + ε)dg(G) vertices.



Tightness of the bound

Kr for r ≈ n/ε

n-vertex G



Summary of the results
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Degeneracy are NP-complete for k = 2, and the hardness
for Longest Cycle Above Degeneracy holds for connected
graphs.

Longest Path Above Degeneracy is FPT for connected
graphs when parameterized by k.

Longest Cycle Above Degeneracy is FPT for 2-connected
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Is the problem FPT when parameterized by k for connected
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For a graph G, the average degree of G is

ad(G) =
∑

v∈V(G)

d(v)/|V(G)| = 2|E(G)|/|V(G)|.
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least ad(G) + k vertices.

Is the problem FPT when parameterized by k for connected
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Open problemsConclusion

Exact Detour (for directed or undirected graphs)
→ randomized time 2.746k

→ deterministic time 6.745k

Detour (for undirected graphs)
→ deterministic time ck

Open: Detour in directed graphs



Thank You!
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