Parameterized Algorithms for Longest paths and cycles Above Some Natural Lower Bounds

Saket Saurabh

The Institute of Mathematical Sciences, India

Recent Trends in Algorithms, NISER, February 10, 2019

The Longest Path and Cycle problems

Longest Path

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a path with (at least) *k* vertices.

The Longest Path and Cycle problems

Longest Path

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a path with (at least) *k* vertices.

Longest Cycle

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a cycle with at least *k* vertices.

Some History (Longest Path)

Reference	Randomized	Deterministic
Monien85	-	$\mathcal{O}(k!nm)$
Bodlaender	-	$\mathcal{O}(k!2^kn)$
Alon, Y and Z	$\mathcal{O}(5.44^kn)$	$\mathcal{O}(c^k n \log n)$ for a large c
Huffner, W, and Z	$\mathcal{O}(4.32^km)$	
Kneis, M, R, and R	$\mathcal{O}^*(4^k)$	$\mathcal{O}^*(16^k)$
Chen, L, S, and Z	$\mathcal{O}(4^k k^{2.7}m)$	$4^{k+\mathcal{O}(\log^3 k)}nm$
Koutis	$\mathcal{O}^*(2.83^k)$	-
Williams	$\mathcal{O}^*(2^k)$	-
Bjorklund, H, K, and K	$\mathcal{O}^*(1.66^k)$	-
Fomin, L, and S	-	$\mathcal{O}(2.851^k n \log^2 n)$
F, L, P, and S	-	$\mathcal{O}(2.619^k n \log n)$
Zehavi		$\mathcal{O}^*(2.5961^k)$

Puzzle

• Assume that you have an oracle \mathcal{A} that can test whether there is a cycle of length ℓ in an undirected graph G in time $\mathcal{O}^*(2^{\ell})$.

Puzzle

- Assume that you have an oracle \mathcal{A} that can test whether there is a cycle of length ℓ in an undirected graph G in time $\mathcal{O}^*(2^{\ell})$.
- 2 Can you use \mathcal{A} to solve Longest Cycle in time $\mathcal{O}^*(2^{\mathcal{O}(k)})$.

The Longest Path and Cycle problems

Theorem (Zehavi, 2015, 2017)

Longest Path and Longest Cycle can be solved in times 2.59606^k $\cdot n^{\mathcal{O}(1)}$ and 4^k $\cdot n^{\mathcal{O}(1)}$ (randomized) respectively.

The Longest Path and Cycle problems

Theorem (Zehavi, 2015, 2017)

Longest Path and Longest Cycle can be solved in times 2.59606^k $\cdot n^{\mathcal{O}(1)}$ and $4^k \cdot n^{\mathcal{O}(1)}$ (randomized) respectively.

• Longest Cycle can be solved deterministically in time 4.884^k · n^{O(1)} respectively.

Above Guarantee Parameterization

Finding Detours is FPT

Ivona Bezáková Radu Curticapean Holger Dell Fedor Fomin

Is there a path from s to t of length...

- $\leq k$? \rightarrow Shortest Path
- **\geq k**? \rightarrow Longest Path
- **= k**? \rightarrow Exact Path

randomized time O^{*}(1.657^k) [Björklund, Husfeldt, Kaski, Koivisto 2010]

deterministic time O^{*}(2.597^k) [Zehavi 2015]

Observation: Algorithms bad when $k < d(s,t) \sim n^{0.1}$

Detour = "Above guarantee" Longest Path

Is there a path from s to t of length...

- $\geq d(s,t) + k$? \rightarrow Detour
- = d(s,t) + k? \rightarrow Exact Detour

Our result: Both variants are FPT

Actual talk will be:

Longest Path and Cycle Above Degeneracy

A graph *G* is *d*-degenerate if every subgraph *H* of *G* has a vertex of degree at most *d*, that is, the minimum degree $\delta(H) \leq d$.

A graph *G* is *d*-degenerate if every subgraph *H* of *G* has a vertex of degree at most *d*, that is, the minimum degree $\delta(H) \leq d$. The degeneracy of graph *G*, also known as the coloring number, is

 $\mathsf{dg}(G) = \max\{\delta(H) \mid H \text{ is a subgraph of } G\}.$

A graph *G* is *d*-degenerate if every subgraph *H* of *G* has a vertex of degree at most *d*, that is, the minimum degree $\delta(H) \leq d$. The degeneracy of graph *G*, also known as the coloring number, is

 $dg(G) = \max{\delta(H) \mid H \text{ is a subgraph of } G}.$

Exercise: Show that a graph of minimum degree at least *d* contains a path with at least d + 1 vertices.

Exercise: Show that a graph of minimum degree at least *d* contains a path with at least d + 1 vertices.

Exercise: Show that a graph of minimum degree at least $d \ge 2$ contains a cycle with at least d + 1 vertices.

Exercise: Show that a graph of minimum degree at least *d* contains a path with at least d + 1 vertices.

Exercise: Show that a graph of minimum degree at least $d \ge 2$ contains a cycle with at least d + 1 vertices.

Proposition

A graph G of degeneracy d contains a path with at least d + 1 vertices. If $d \ge 2$, then G contains a cycle with at least d + 1 vertices.

Longest Path Above Degeneracy

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a path with (at least) dg(G) + k vertices.

Longest Path Above Degeneracy

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a path with (at least) dg(G) + k vertices.

Longest Cycle Above Degeneracy

Input: A graph *G* and a positive integer *k*.

Task: Decide whether *G* contains a cycle with at least dg(G) + k vertices.

Proposition

Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2. Moreover, the NP-hardness result for Longest Cycle Above Degeneracy holds for connected graphs.

Proposition

Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2. Moreover, the NP-hardness result for Longest Cycle Above Degeneracy holds for connected graphs.

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

Theorem

Longest Cycle Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for 2-connected graphs.

Longest Path Above Degeneracy

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

If d < 5k, then we solve Longest Path Above Degeneracy using the known results for Longest Path.

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

If d < 5k, then we solve Longest Path Above Degeneracy using the known results for Longest Path.

Assume from now that $d \ge 5k$.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959) Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let *H* be a $\frac{d}{d}$ -core of *G*.
A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let *H* be a d-core of *G*.

If $|V(H)| \ge d + k$, then *H* contains a path on d + k vertices.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let *H* be a d-core of *G*.

If $|V(H)| \ge d + k$, then *H* contains a path on d + k vertices.

Assume from now that |V(H)| < d + k.

Recall that $d = \delta(H) \ge 5k$ and $d + 1 \le |V(H)| < d + k$.

Recall that $d = \delta(H) \ge 5k$ and $d + 1 \le |V(H)| < d + k$. In particular, every vertex of *H* has at most k - 2 non-neighbors.

Recall that $d = \delta(H) \ge 5k$ and $d + 1 \le |V(H)| < d + k$. In particular, every vertex of *H* has at most k - 2 non-neighbors.

Let $\{s_1, t_1\}, \ldots, \{s_r, t_r\}, r \le k$, be a collection of pairs of vertices of *H* such that

- $s_i \neq t_j$ for all $i \neq j, i, j \in \{1, \ldots, r\}$,
- $s_i \neq s_j$ for all $i \neq j, i, j \in \{1, \ldots, r\}$, and
- there is at least one index $i \in \{1, \ldots, r\}$ such that $s_i \neq t_i$.

Recall that $d = \delta(H) \ge 5k$ and $d + 1 \le |V(H)| < d + k$. In particular, every vertex of *H* has at most k - 2 non-neighbors.

Let $\{s_1, t_1\}, \ldots, \{s_r, t_r\}, r \leq k$, be a collection of pairs of vertices of *H* such that

- $s_i \neq t_j$ for all $i \neq j, i, j \in \{1, \ldots, r\}$,
- $s_i \neq s_j$ for all $i \neq j, i, j \in \{1, \ldots, r\}$, and
- there is at least one index $i \in \{1, ..., r\}$ such that $s_i \neq t_i$.

Claim: There is a family of pairwise vertex-disjoint paths $\mathcal{P} = \{P_1, \ldots, P_r\}$ in *H* such that each P_i is an (s_i, t_i) -path and $\cup_{i=1}^r V(P_i) = V(H)$, that is, the paths cover all vertices of *H*.

Claim: If *G* has a path with d + k vertices, then *G* has a path *P* with d + k vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of *P* is outside *H*.

Claim: If *G* has a path with d + k vertices, then *G* has a path *P* with d + k vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of *P* is outside *H*.

Claim: If *G* has a path with d + k vertices, then *G* has a path *P* with d + k vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of *P* is outside *H*.

Claim: If *G* has a family of internally vertex disjoint paths s.t.

- there are at least one and at most two paths that have its one end-vertex outside V(H) and the second in V(H), and the other paths have their end-vertices in V(H),
- the union of the paths is a linear forest such that if two paths have end-vertices outside V(H), then they are in distinct component of the forest,
- the total number of internal vertices is p = d + k |V(H)|, then *G* has a path with d + k vertices.

Longest Cycle Above Degeneracy

Theorem

Longest Cycle Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for 2-connected graphs.

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

If d < 5k, then we solve Longest Cycle Above Degeneracy using the known results for Longest Cycle.

Small degeneracy

Let *G* be a connected graph of degeneracy *d* and let k be a positive integer.

If d < 5k, then we solve Longest Cycle Above Degeneracy using the known results for Longest Cycle.

Assume from now that $d \ge 5k$.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let H be a d-core of G.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let H be a d-core of G.

Note that a core is connected but not necessarily 2-connected.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let *H* be a d-core of *G*.

Note that a core is connected but not necessarily 2-connected.

If $|V(H)| \ge d + k$, then *G* contain a cycle on d + k vertices.

A *d*-core of *G* is an inclusion maximal induced connected subgraph *H* with $\delta(H) \ge d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Let *H* be a d-core of *G*.

Note that a core is connected but not necessarily 2-connected.

If $|V(H)| \ge d + k$, then *G* contain a cycle on d + k vertices.

Assume from now that |V(H)| < d + k.

Claim: If *G* has a cycle with at least d + k vertices, then *G* has a cycle *C* with d + k vertices such that $V(H) \subseteq V(C)$.

Claim: If *G* has a cycle with at least d + k vertices, then *G* has a cycle *C* with d + k vertices such that $V(H) \subseteq V(C)$.

Tightness of the bound

Proposition

For any $\varepsilon > 0$, it is NP-complete to decide whether a connected graph *G* contains a path with at least $(1 + \varepsilon)dg(G)$ vertices and it is NP-complete to decide whether a 2-connected graph *G* contains a cycle with at least $(1 + \varepsilon)dg(G)$ vertices.

Tightness of the bound

Summary of the results

• Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by *k*.
Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by *k*.
- Longest Cycle Above Degeneracy is FPT for 2-connected graphs when parameterized by *k*.

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for k = 2, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by *k*.
- Longest Cycle Above Degeneracy is FPT for 2-connected graphs when parameterized by *k*.
- For any ε > 0, it is NP-complete to decide whether a connected graph *G* contains a path with at least (1 + ε)dg(*G*) vertices and it is NP-complete to decide whether a 2-connected graph *G* contains a cycle with at least (1 + ε)dg(*G*) vertices.

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a path with (at least) $2\delta(G) + k$ vertices.

Theorem (Erdös and Gallai, 1959)

Every connected *n*-vertex graph *G* contains a path with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a path with (at least) $2\delta(G) + k$ vertices.

Is the problem FPT when parameterized by k for connected graphs?

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a cycle with at least $2\delta(G) + k$ vertices.

Theorem (Dirac, 1952)

Every 2-connected *n*-vertex graph *G* contains a cycle with at least $\min\{2\delta(G) + 1, n\}$ vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a cycle with at least $2\delta(G) + k$ vertices.

Is the problem FPT when parameterized by k for 2-connected graphs?

For a graph G, the average degree of G is

$$ad(G) = \sum_{v \in V(G)} d(v)/|V(G)| = 2|E(G)|/|V(G)|.$$

For a graph G, the average degree of G is

$$ad(G) = \sum_{v \in V(G)} d(v) / |V(G)| = 2|E(G)| / |V(G)|.$$

Observation: A graph *G* has a path with ad(G) + 1 vertices, and a 2-connected graph *G* contains a cycle with at least ad(G) + 1 vertices.

For a graph G, the average degree of G is

$$ad(G) = \sum_{v \in V(G)} d(v) / |V(G)| = 2|E(G)| / |V(G)|.$$

Observation: A graph *G* has a path with ad(G) + 1 vertices, and a 2-connected graph *G* contains a cycle with at least ad(G) + 1 vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a path (cycle) with at least ad(G) + k vertices.

For a graph G, the average degree of G is

$$ad(G) = \sum_{v \in V(G)} d(v) / |V(G)| = 2|E(G)| / |V(G)|.$$

Observation: A graph *G* has a path with ad(G) + 1 vertices, and a 2-connected graph *G* contains a cycle with at least ad(G) + 1 vertices.

Input: A graph *G* and a positive integer *k*. **Task:** Decide whether *G* contains a path (cycle) with at least ad(G) + k vertices.

Is the problem FPT when parameterized by k for connected (2-connected) graphs?

Exact Detour (for directed or undirected graphs) \rightarrow randomized time 2.746^k \rightarrow deterministic time 6.745^k

Detour (for undirected graphs)

 \rightarrow deterministic time c^k

Open: Detour in directed graphs

Thank You!