Parameterized Algorithms for Longest paths and cycles Above Some Natural Lower Bounds

Saket Saurabh

The Institute of Mathematical Sciences, India
Recent Trends in Algorithms, NISER, February 10, 2019

The Longest Path and Cycle problems

Longest Path

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) k vertices.

The Longest Path and Cycle problems

Longest Path

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) k vertices.

Longest Cycle
Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle with at least k vertices.

Some History (Longest Path)

Reference	Randomized	Deterministic
Monien85	-	$\mathcal{O}(k!n m)$
Bodlaender	-	$\mathcal{O}\left(k!2^{k} n\right)$
Alon, Y and Z	$\mathcal{O}\left(5.44^{k} n\right)$	$\mathcal{O}\left(c^{k} n \log n\right)$ for a large c
Huffner, W, and Z	$\mathcal{O}\left(4.32^{k} m\right)$	
Kneis, M, R, and R	$\mathcal{O}^{*}\left(4^{k}\right)$	$\mathcal{O}^{*}\left(16^{k}\right)$
Chen, L, S, and Z	$\mathcal{O}\left(4^{k} k^{2.7} m\right)$	$4^{k+\mathcal{O}\left(\log ^{3} k\right)} n m$
Koutis	$\mathcal{O}^{*}\left(2.83^{k}\right)$	-
Williams	$\mathcal{O}^{*}\left(2^{k}\right)$	-
Bjorklund, H, K, and K	$\mathcal{O}^{*}\left(1.66^{k}\right)$	-
Fomin, L, and S	-	$\mathcal{O}\left(2.851^{k} n \log ^{2} n\right)$
F, L, P, and S	-	$\mathcal{O}\left(2.619^{k} n \log n\right)$
Zehavi		$\mathcal{O}^{*}\left(2.5961^{k}\right)$

Puzzle

(1) Assume that you have an oracle \mathcal{A} that can test whether there is a cycle of length ℓ in an undirected graph G in time $\mathcal{O}^{*}\left(2^{\ell}\right)$.

Puzzle

(1) Assume that you have an oracle \mathcal{A} that can test whether there is a cycle of length ℓ in an undirected graph G in time $\mathcal{O}^{*}\left(2^{\ell}\right)$.
(2) Can you use \mathcal{A} to solve Longest Cycle in time $\mathcal{O}^{*}\left(2^{\mathcal{O}(k)}\right)$.

The Longest Path and Cycle problems

Theorem (Zehavi, 2015, 2017)
Longest Path and Longest Cycle can be solved in times $2.59606^{k} \cdot n^{\mathcal{O}(1)}$ and $4^{k} \cdot n^{\mathcal{O}(1)}$ (randomized) respectively.

The Longest Path and Cycle problems

Theorem (Zehavi, 2015, 2017)
Longest Path and Longest Cycle can be solved in times $2.59606^{k} \cdot n^{\mathcal{O}(1)}$ and $4^{k} \cdot n^{\mathcal{O}(1)}$ (randomized) respectively.

- Longest Cycle can be solved deterministically in time $4.884^{k} \cdot n^{\mathcal{O}(1)}$ respectively.

Above Guarantee Parameterization

Is there a path from s to t of length...

$\leq k$? \rightarrow Shortest Path
$\geq \mathrm{k}$? \rightarrow Longest Path
$=k$? \rightarrow Exact Path
randomized time $0^{*}(1.657 .9$
[Björklund, Husfeldt, Kaski, Koivisto 2010]
deterministic time $0^{*}\left(2.597{ }^{2}\right)$
[Zehavi 2015]

Observation: Algorithms bad when $\mathrm{k}<\mathrm{d}(\mathrm{s}, \mathrm{t}) \sim \mathrm{n}^{0.1}$

Detour = "Above guarantee" Longest Path

Is there a path from s to t of length...

$$
\begin{array}{ll}
\geq \mathrm{d}(\mathrm{~s}, \mathrm{t})+\mathrm{k} ? & \rightarrow \text { Detour } \\
=\mathrm{d}(\mathrm{~s}, \mathrm{t})+\mathrm{k} ? & \rightarrow \text { Exact Detour }
\end{array}
$$

Our result: Both variants are FPT

Actual talk will be:

Longest Path and Cycle Above Degeneracy

Degeneracy and paths (cycles)

A graph G is d-degenerate if every subgraph H of G has a vertex of degree at most d, that is, the minimum degree $\delta(H) \leq d$.

Degeneracy and paths (cycles)

A graph G is d-degenerate if every subgraph H of G has a vertex of degree at most d, that is, the minimum degree $\delta(H) \leq d$.
The degeneracy of graph G, also known as the coloring number, is

$$
\operatorname{dg}(G)=\max \{\delta(H) \mid H \text { is a subgraph of } G\}
$$

Degeneracy and paths (cycles)

A graph G is d-degenerate if every subgraph H of G has a vertex of degree at most d, that is, the minimum degree $\delta(H) \leq d$.
The degeneracy of graph G, also known as the coloring number, is

$$
\operatorname{dg}(G)=\max \{\delta(H) \mid H \text { is a subgraph of } G\}
$$

Degeneracy and paths (cycles)

Exercise: Show that a graph of minimum degree at least d contains a path with at least $d+1$ vertices.

Degeneracy and paths (cycles)

Exercise: Show that a graph of minimum degree at least d contains a path with at least $d+1$ vertices.

Exercise: Show that a graph of minimum degree at least $d \geq 2$ contains a cycle with at least $d+1$ vertices.

Degeneracy and paths (cycles)

Exercise: Show that a graph of minimum degree at least d contains a path with at least $d+1$ vertices.

Exercise: Show that a graph of minimum degree at least $d \geq 2$ contains a cycle with at least $d+1$ vertices.

Proposition

A graph G of degeneracy d contains a path with at least $d+1$ vertices. If $d \geq 2$, then G contains a cycle with at least $d+1$ vertices.

Longest Path and Cycle Above Degeneracy

Longest Path Above Degeneracy
Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) $\mathrm{dg}(G)+k$ vertices.

Longest Path and Cycle Above Degeneracy

Longest Path Above Degeneracy
Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) $\mathrm{dg}(G)+k$ vertices.

Longest Cycle Above Degeneracy
Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle with at least $\mathrm{d} g(G)+k$ vertices.

Longest Path and Cycle Above Degeneracy

Proposition

Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$. Moreover, the NP-hardness result for Longest Cycle Above Degeneracy holds for connected graphs.

Longest Path and Cycle Above Degeneracy

Proposition

Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$. Moreover, the NP-hardness result for Longest Cycle Above Degeneracy holds for connected graphs.

Longest Path and Cycle Above Degeneracy

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

Longest Path and Cycle Above Degeneracy

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

Theorem

Longest Cycle Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for 2-connected graphs.

Longest Path Above Degeneracy

Theorem

Longest Path Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for connected graphs.

Degeneracy and paths (cycles)

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Degeneracy and paths (cycles)

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Degeneracy and paths (cycles)

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

If $d<5 k$, then we solve Longest Path Above Degeneracy using the known results for Longest Path.

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

If $d<5 k$, then we solve Longest Path Above Degeneracy using the known results for Longest Path.

Assume from now that $d \geq 5 k$.

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)
Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)
Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)
Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.
If $|V(H)| \geq d+k$, then H contains a path on $d+k$ vertices.

Cores and paths

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Erdös and Gallai, 1959)
Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.
If $|V(H)| \geq d+k$, then H contains a path on $d+k$ vertices.
Assume from now that $|V(H)|<d+k$.

Cores and paths

Recall that $d=\delta(H) \geq 5 k$ and $d+1 \leq|V(H)|<d+k$.

Cores and paths

Recall that $d=\delta(H) \geq 5 k$ and $d+1 \leq|V(H)|<d+k$.
In particular, every vertex of H has at most $k-2$ non-neighbors.

Cores and paths

Recall that $d=\delta(H) \geq 5 k$ and $d+1 \leq|V(H)|<d+k$.
In particular, every vertex of H has at most $k-2$ non-neighbors.
Let $\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{r}, t_{r}\right\}, r \leq k$, be a collection of pairs of vertices of H such that

- $s_{i} \neq t_{j}$ for all $i \neq j, i, j \in\{1, \ldots, r\}$,
- $s_{i} \neq s_{j}$ for all $i \neq j, i, j \in\{1, \ldots, r\}$, and
- there is at least one index $i \in\{1, \ldots, r\}$ such that $s_{i} \neq t_{i}$.

Cores and paths

Recall that $d=\delta(H) \geq 5 k$ and $d+1 \leq|V(H)|<d+k$.
In particular, every vertex of H has at most $k-2$ non-neighbors.
Let $\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{r}, t_{r}\right\}, r \leq k$, be a collection of pairs of vertices of H such that

- $s_{i} \neq t_{j}$ for all $i \neq j, i, j \in\{1, \ldots, r\}$,
- $s_{i} \neq s_{j}$ for all $i \neq j, i, j \in\{1, \ldots, r\}$, and
- there is at least one index $i \in\{1, \ldots, r\}$ such that $s_{i} \neq t_{i}$.

Claim: There is a family of pairwise vertex-disjoint paths $\mathcal{P}=\left\{P_{1}, \ldots, P_{r}\right\}$ in H such that each P_{i} is an $\left(s_{i}, t_{i}\right)$-path and $\cup_{i=1}^{r} V\left(P_{i}\right)=V(H)$, that is, the paths cover all vertices of H.

Cores and paths

Cores and paths

Cores and paths

Cores and paths

Cores and paths

Claim: If G has a path with $d+k$ vertices, then G has a path P with $d+k$ vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of P is outside H.

Cores and paths

Claim: If G has a path with $d+k$ vertices, then G has a path P with $d+k$ vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of P is outside H.

Cores and paths

Cores and paths

Cores and paths

Cores and paths

Claim: If G has a path with $d+k$ vertices, then G has a path P with $d+k$ vertices such that $V(H) \subseteq V(P)$ and at least one end-vertex of P is outside H.

Cores and paths

Claim: If G has a family of internally vertex disjoint paths s.t.

- there are at least one and at most two paths that have its one end-vertex outside $V(H)$ and the second in $V(H)$, and the other paths have their end-vertices in $V(H)$,
- the union of the paths is a linear forest such that if two paths have end-vertices outside $V(H)$, then they are in distinct component of the forest,
- the total number of internal vertices is $p=d+k-|V(H)|$, then G has a path with $d+k$ vertices.

Longest Cycle Above Degeneracy

Theorem

Longest Cycle Above Degeneracy can be solved in time $2^{O(k)} \cdot n^{O(1)}$ for 2-connected graphs.

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

If $d<5 k$, then we solve Longest Cycle Above Degeneracy using the known results for Longest Cycle.

Small degeneracy

Let G be a connected graph of degeneracy d and let k be a positive integer.

If $d<5 k$, then we solve Longest Cycle Above Degeneracy using the known results for Longest Cycle.

Assume from now that $d \geq 5 k$.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)
Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)
Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)
Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.
Note that a core is connected but not necessarily 2-connected.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)
Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.
Note that a core is connected but not necessarily 2-connected.
If $|V(H)| \geq d+k$, then G contain a cycle on $d+k$ vertices.

Cores and cycles

A d-core of G is an inclusion maximal induced connected subgraph H with $\delta(H) \geq d$.

Every graph of degeneracy at least d contains a d-core that can be found in linear time

Theorem (Dirac, 1952)
Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Let H be a d-core of G.
Note that a core is connected but not necessarily 2-connected.
If $|V(H)| \geq d+k$, then G contain a cycle on $d+k$ vertices.
Assume from now that $|V(H)|<d+k$.

Cores and cycles

Claim: If G has a cycle with at least $d+k$ vertices, then G has a cycle C with $d+k$ vertices such that $V(H) \subseteq V(C)$.

Cores and cycles

Claim: If G has a cycle with at least $d+k$ vertices, then G has a cycle C with $d+k$ vertices such that $V(H) \subseteq V(C)$.

Cores and cycles

Cores and cycles

Tightness of the bound

Proposition

For any $\varepsilon>0$, it is NP-complete to decide whether a connected graph G contains a path with at least $(1+\varepsilon) \operatorname{dg}(G)$ vertices and it is NP-complete to decide whether a 2-connected graph G contains a cycle with at least $(1+\varepsilon) \operatorname{dg}(G)$ vertices.

Tightness of the bound

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by k.

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by k.
- Longest Cycle Above Degeneracy is FPT for 2-connected graphs when parameterized by k.

Summary of the results

- Longest Path Above Degeneracy and Longest Cycle Above Degeneracy are NP-complete for $k=2$, and the hardness for Longest Cycle Above Degeneracy holds for connected graphs.
- Longest Path Above Degeneracy is FPT for connected graphs when parameterized by k.
- Longest Cycle Above Degeneracy is FPT for 2-connected graphs when parameterized by k.
- For any $\varepsilon>0$, it is NP-complete to decide whether a connected graph G contains a path with at least $(1+\varepsilon) \operatorname{dg}(G)$ vertices and it is NP-complete to decide whether a 2 -connected graph G contains a cycle with at least $(1+\varepsilon) \operatorname{dg}(G)$ vertices.

Open problems

Theorem (Erdös and Gallai, 1959)

Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Open problems

Theorem (Erdös and Gallai, 1959)

Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) $2 \delta(G)+k$ vertices.

Open problems

Theorem (Erdös and Gallai, 1959)

Every connected n-vertex graph G contains a path with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with (at least) $2 \delta(G)+k$ vertices.

Is the problem FPT when parameterized by k for connected graphs?

Open problems

Theorem (Dirac, 1952)

Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Open problems

Theorem (Dirac, 1952)

Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle with at least $2 \delta(G)+k$ vertices.

Open problems

Theorem (Dirac, 1952)

Every 2-connected n-vertex graph G contains a cycle with at least $\min \{2 \delta(G)+1, n\}$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle with at least $2 \delta(G)+k$ vertices.

Is the problem FPT when parameterized by k for 2 -connected graphs?

Open problems

For a graph G, the average degree of G is

$$
\operatorname{ad}(G)=\sum_{v \in V(G)} d(v) /|V(G)|=2|E(G)| /|V(G)|
$$

Open problems

For a graph G, the average degree of G is

$$
\operatorname{ad}(G)=\sum_{v \in V(G)} d(v) /|V(G)|=2|E(G)| /|V(G)|
$$

Observation: A graph G has a path with $\operatorname{ad}(G)+1$ vertices, and a 2-connected graph G contains a cycle with at least $\operatorname{ad}(G)+1$ vertices.

Open problems

For a graph G, the average degree of G is

$$
\operatorname{ad}(G)=\sum_{v \in V(G)} d(v) /|V(G)|=2|E(G)| /|V(G)|
$$

Observation: A graph G has a path with $\operatorname{ad}(G)+1$ vertices, and a 2-connected graph G contains a cycle with at least $a d(G)+1$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path (cycle) with at least $a d(G)+k$ vertices.

Open problems

For a graph G, the average degree of G is

$$
\operatorname{ad}(G)=\sum_{v \in V(G)} d(v) /|V(G)|=2|E(G)| /|V(G)|
$$

Observation: A graph G has a path with $a d(G)+1$ vertices, and a 2-connected graph G contains a cycle with at least $\operatorname{ad}(G)+1$ vertices.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path (cycle) with at least $a d(G)+k$ vertices.

Is the problem FPT when parameterized by k for connected (2-connected) graphs?

Open problems

Exact Detour (for directed or undirected graphs)

\rightarrow randomized time 2.746k
\rightarrow deterministic time 6.745k

Detour (for undirected graphs)
\rightarrow deterministic time c ${ }^{\mathrm{k}}$

Open: Detour in directed graphs

Thank You!

