Simultaneous Consecutive Ones Submatrix and Editing Problems: Classical Complexity \& Fixed-Parameter Tractable Results

Rani M R

Joint work with

R. Subashini and Mohith Jagalmohanan

National Institute of Technology Calicut, India.

[^0]
Outline

(1) Simultaneous Consecutive Ones Problem
(2) Problems based on Simultaneous Consecutive Ones Property
(3) Results

- Classical Complexity Results
- Fixed-Parameter Tractable Results

4 Concluding Remarks

Simultaneous Consecutive Ones Problem ${ }^{1}$

- Does a given binary matrix have the simultaneous consecutive ones property (SC1P) ?

$$
\begin{aligned}
& r_{1} \\
& r_{2} \\
& r_{3} \\
& r_{4}
\end{aligned}\left(\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

[^1]
Simultaneous Consecutive Ones Property

- Permute the rows and columns so that the ones appear consecutively in every column and every row.

$$
\begin{aligned}
& r_{1} \\
& r_{2} \\
& r_{3} \\
& r_{4}
\end{aligned}\left(\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Simultaneous Consecutive Ones Property

- Permute the rows and columns so that the ones appear consecutively in every column and every row.

$$
\begin{aligned}
& r_{1} \\
& r_{2} \\
& r_{3} \\
& r_{4}
\end{aligned}\left(\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{\text { Permute rows }{ }_{r_{1}}}{ }_{r_{4}}\left(\begin{array}{ccccc}
c_{2} & c_{2} & c_{3} & c_{4} & c_{5} \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Simultaneous Consecutive Ones Property

- Permute the rows and columns so that the ones appear consecutively in every column and every row.

A matrix having the SC1P

Simultaneous Consecutive Ones Property

- Not all binary matrices have the SC1P.
${ }^{2}$ K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

Simultaneous Consecutive Ones Property

- Not all binary matrices have the SC1P.

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

A matrix not having the SC1P
${ }^{2}$ K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

Simultaneous Consecutive Ones Property

- Not all binary matrices have the SC1P .

$$
\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

A matrix not having the SC1P

- Testing SC1P - linear time ${ }^{2}$

[^2]
Characterization of SC1P

A binary matrix M has the $S C 1 P$ if and only if no submatrix of M is a member of the configuration of $M_{1_{k}}(k \geq 1), M_{2_{1}}, M_{2_{2}}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}$ or their transposes ${ }^{a}$.

[^3]\[

$$
\begin{array}{cc}
{\left[\begin{array}{ccccccc}
1 & 1 & 0 & . & . & . & 0 \\
0 & 1 & 1 & 0 & . & . & 0 \\
0 & 0 & 1 & 1 & 0 & . & 0 \\
. & . & . & . & . & . & . \\
0 & . & . & . & 0 & 1 & 1 \\
1 & 0 & . & . & . & 0 & 1
\end{array}\right]} \\
\left.\begin{array}{c}
M_{I_{k}}, \\
k \geq 1 \\
k+2
\end{array}\right)\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \text { rolumns) and } \\
{\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]}
\end{array}
$$\left[$$
\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}
$$\right]
\]

Characterization of SC1P

A binary matrix M has the $S C 1 P$ if and only if no submatrix of M is a member of the configuration of $M_{1_{k}}(k \geq 1), M_{2_{1}}, M_{2_{2}}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}$ or their transposes ${ }^{a}$.

[^4]

Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems

[^5]
Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems - SC1S-row deletion.
${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row \& column deletion.

[^6]
Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row \& column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems

[^7]
Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row \& column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
- SC1P-0-flipping

[^8]
Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row \& column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
- SC1P-0-flipping
- SC1P-1-flipping ${ }^{3}$

[^9]
Problems based on SC1P

- Simultaneous Consecutive Ones Submatrix (SC1S) problems
- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row \& column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
- SC1P-0-flipping
- SC1P-1-flipping ${ }^{3}$
- SC1P-01-flipping

[^10]
Applications

- In Bioinformatics

[^11]
Applications

- In Bioinformatics
- To discover functionally meaningful patterns from gene expression data ${ }^{4}$.

[^12]
Applications

- In Bioinformatics
- To discover functionally meaningful patterns from gene expression data ${ }^{4}$.

Metabolic network of gene-expression data

Adjacency matrix of metabolites

- represents 1-entries
- represents 0 -entries
- Gene expression data mapped onto metabolic network.
- An adjacency matrix of metabolites was created.
- Consecutive ones clustering method used to obtain network clusters.

[^13]
Biconvex graphs \& SC1P

Biconvex Graphs

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

> Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
> Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Biconvex graphs \& SC1P

Biconvex Graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if both V_{1} and V_{2} can be ordered so that for every vertex v in $V_{1} \cup V_{2}$, neighbors of v occur consecutively in the ordering.

Ordering of $V_{1}: x_{1}, x_{2}, x_{3}, x_{4}$
Ordering of $V_{2}: y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$

Characterization of Biconvex graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if and only if its half adjacency matrix has the SC1P ${ }^{a}$.

[^14]
Characterization of Biconvex graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if and only if its half adjacency matrix has the SC1P ${ }^{a}$.

[^15]

Bipartite Graph

Characterization of Biconvex graphs

A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ is biconvex if and only if its half adjacency matrix has the SC1P ${ }^{a}$.

[^16]

Half-adjacency matrix
Bipartite Graph

Biconvex graphs : Constrained Vertex Deletion

Half-adjacency matrix of $G, M(G)$
A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ (not biconvex)
$V_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $V_{2}=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$

Biconvex graphs : Constrained Vertex Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Constrained Vertex Deletion

Biconvex graphs : Constrained Vertex Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

SC1S-row deletion \Leftrightarrow Problem of finding a minimum number of vertices to be deleted from V_{1}, so that the resultant graph is biconvex.

Biconvex graphs : Constrained Vertex Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Constrained Vertex Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Constrained Vertex Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

SC1S-column deletion \Leftrightarrow Problem of finding a minimum number of vertices to be deleted from V_{2}, so that the resultant graph is biconvex.

Biconvex graphs : Vertex Deletion

Biconvex graphs : Vertex Deletion

Biconvex graphs : Vertex Deletion

A bipartite graph G (not biconvex)

Half-adjacency matrix of $G, M(G)$

SC1S-row \& column deletion \Leftrightarrow Problem of finding a minimum number of vertices to be deleted from $V_{1} \cup V_{2}$, so that the resultant graph is biconvex.

Biconvex graphs : Completion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Completion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Completion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Completion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

SC1P-0-Flipping \Leftrightarrow Problem of finding a minimum number of non-edges to be added to G, so that the resultant graph is biconvex.

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

SC1P-1-Flipping \Leftrightarrow Problem of finding a minimum number of edges to be deleted from G, so that the resultant graph is biconvex.

Biconvex graphs : Edge Modification

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Edge Modification

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs: Edge Modification

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

Biconvex graphs : Edge Modification

A bipartite graph G (not biconvex) Half-adjacency matrix of $G, M(G)$

SC1P-01-Flipping \Leftrightarrow Problem of finding a minimum number of edges to be added/deleted to/from G, so that the resultant graph is biconvex.

Classical Complexity Results

- Decision version of SC1S and SC1E problems are NP-complete.

NP-completeness of $k-S C 1 S-R$

Hamiltonian-Path $\leq_{p} k-S C 1 S-R$

NP-completeness of $k-S C 1 S-R$

Hamiltonian-Path $\leq_{p} k-S C 1 S-R$

Transformation

Graph $G=(V, E)$, where $|V|=n$ and $|E|=m$.
Edge vertex incidence matrix $M(G)_{m \times n}$, where $k=|m|-|n|+1$.

NP-completeness of $k-S C 1 S-R$

```
Hamiltonian-Path \(\leq_{p} k-S C 1 S-R\)
```


ransformation

Graph $G=(V, E)$, where $|V|=n$ and $|E|=m$.
Edge vertex incidence matrix $M(G)_{m \times n}$, where $k=|m|-|n|+1$.

- G has a Hamiltonian path \Leftrightarrow

NP-completeness of $k-S C 1 S-R$

```
Hamiltonian-Path }\mp@subsup{\leq}{p}{}k-SC1S-
```


Transformation

Graph $G=(V, E)$, where $|V|=n$ and $|E|=m$.
Edge vertex incidence matrix $M(G)_{m \times n}$, where $k=|m|-|n|+1$.

- G has a Hamiltonian path \Leftrightarrow there exists a set of rows of size k in $M(G)$ whose deletion results in a matrix $M^{\prime}(G)$, that satisfy the SC1P.

NP-completeness of $k-S C 1 S-R$

Forward direction:

G

NP-completeness of $k-S C 1 S-R$

Forward direction:

G
$\left\{v_{1}, v_{4}\right\}$
$\left\{v_{1}, v_{2}\right\}$
$\left\{v_{2}, v_{3}\right\}$
$\left\{v_{3}, v_{4}\right\}$
$\left\{v_{4}, v_{5}\right\}$
$\left\{v_{3}, v_{5}\right\}$
$\left\{v_{3}, v_{6}\right\}$
$\left\{v_{4}, v_{6}\right\}$$\left(\begin{array}{cccccc}1 & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 \\ 0 & & & & & 1\end{array}\right)$
$M(G)$

NP-completeness of $k-S C 1 S-R$

Forward direction:

G
$\left\{v_{1}, v_{4}\right\}$
$\left\{v_{1}, v_{2}\right\}$
$\left\{v_{2}, v_{3}\right\}$
$\left\{v_{3}, v_{4}\right\}$
$\left\{v_{4}, v_{5}\right\}$
$\left\{v_{3}, v_{5}\right\}$
$\left\{v_{3}, v_{6}\right\}$
$\left\{v_{4}, v_{6}\right\}$$\left(\begin{array}{cccccc}1 & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 \\ 0 & & & & & 1\end{array}\right)$
$M(G)$

NP-completeness of $k-S C 1 S-R$

Forward direction:

$\left.\begin{array}{l}\left\{v_{1}, v_{4}\right\} \\ \left\{v_{1}, v_{2}\right\} \\ \left\{v_{2}, v_{3}\right\} \\ \left\{v_{3}, v_{5}\right\} \\ \left\{v_{4}, v_{6}\right\}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
$M^{\prime}(G)$

NP-completeness of $k-S C 1 S-R$

Forward direction:

$\left.\begin{array}{l}\left\{v_{1}, v_{4}\right\} \\ \left\{v_{1}, v_{2}\right\} \\ \left\{v_{2}, v_{3}\right\} \\ \left\{v_{3}, v_{5}\right\} \\ \left\{v_{4}, v_{6}\right\}\end{array} \begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
$M^{\prime}(G)$

Rearrange the rows and columns of $M^{\prime}(G)$ with respect to the sequence of edges and vertices respectively in the hamiltonian path.

NP-completeness of $k-S C 1 S-R$

Forward direction:

$\left\{v_{1}, v_{4}\right\}$
$\left\{v_{1}, v_{2}\right\}$
$\left\{v_{2}, v_{3}\right\}$
$\left\{v_{3}, v_{5}\right\}$
$\left\{v_{4}, v_{6}\right\}$$\left(\begin{array}{cccccc}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
$M^{\prime}(G)$

NP-completeness of $k-S C 1 S-R$

Reverse direction:

$\left.\left.\begin{array}{l}\left\{v_{6}, v_{4}\right\} \\ \left\{v_{3}, v_{6}\right\} \\ \left\{v_{1}, v_{4}\right\} \\ \left\{v_{1}, v_{2}\right\} \\ \left\{v_{2}, v_{3}\right\} \\ \left\{v_{4}\right. \\ \left\{v_{4}, v_{5}\right\} \\ \left\{v_{3}, v_{4}\right\} \\ \left\{v_{4}\right. \\ \left\{v_{4}, v_{3}\right\}\end{array}\right\} \begin{array}{ccccc}v_{1} & v_{2} & 0 & v_{2} & v_{3} \\ 1 & 0 & 0 & 0 & v_{5} \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

M

NP-completeness of $k-S C 1 S-R$

Reverse direction:

M
$\left.\begin{array}{l}\left\{v_{6}, v_{4}\right\} \\ \left\{v_{1}, v_{4}\right\} \\ \left\{v_{1}, v_{2}\right\} \\ \left\{v_{2}, v_{3}\right\} \\ \left\{v_{3}, v_{5}\right\}\end{array} \begin{array}{cccccc}v_{6} & v_{4} & v_{1} & v_{2} & v_{3} & v_{5} \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right)$
M^{\prime}

NP-completeness of $k-S C 1 S-R$

Reverse direction:

$$
M
$$

$\left.\begin{array}{l}\left\{\begin{array}{c} \\ \left\{v_{6}, v_{4}\right\} \\ \left\{v_{1}, v_{4}\right\} \\ \left\{v_{1}, v_{2}\right\} \\ \left\{v_{2}, v_{3}\right\} \\ \left\{v_{3}, v_{5}\right\}\end{array}\right.\end{array} \begin{array}{cccccc}v_{6} & v_{4} & v_{1} & v_{2} & v_{3} & v_{5} \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right)$

Consider G^{\prime}, the subgraph obtained from M^{\prime} by considering M^{\prime} as an edge- vertex incidence matrix.

NP-completeness of k-SC1S-R

Reverse direction:

$$
\left.\left.\left.\begin{array}{l}
\left\{v_{6}, v_{4}\right\} \\
\left\{v_{3}, v_{6}\right\} \\
\left\{v_{1}, v_{4}\right\} \\
\left\{v_{1}, v_{2}\right\} \\
\{
\end{array}\right\} \begin{array}{ccccc}
1 & v_{4} & v_{1} & v_{2} & v_{3} \\
1 & 0 & 0 & 0 & v_{5} \\
\left\{v_{2}, v_{3}\right\} \\
\left\{v_{4}, v_{5}\right\} & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\left\{v_{3}, v_{5}\right\} \\
\left\{v_{4}, v_{3}\right\}
\end{array}\right\} \begin{array}{c}
1 \\
0
\end{array}\right)
$$

$$
\left.\begin{array}{l}
\left\{v_{6}, v_{4}\right\} \\
\left\{v_{1}, v_{4}\right\} \\
\left\{v_{1}, v_{2}\right\} \\
\left\{v_{2}, v_{3}\right\} \\
\left\{v_{3}, v_{5}\right\}
\end{array} \begin{array}{cccccc}
v_{6} & v_{4} & v_{1} & v_{2} & v_{3} & v_{5} \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

M

Consider G^{\prime}, the subgraph obtained from M^{\prime} by considering M^{\prime} as an edge- vertex incidence matrix.

NP-completeness of $k-S C 1 S-C$

- $k-S C 1 S-C$ problem : transpose of $k-S C 1 S-R$ problem.

- consider M as the vertex-edge incidence matrix.
- k as the number of columns to be deleted.

NP-completeness of $k-S C 1 S-R C$

Biconvex Vertex Deletion $\leq_{p} k-S C 1 S-R C$

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ and an integer $k \geq 0$. Question: Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

[^17]
NP-completeness of $k-S C 1 S-R C$

Biconvex Vertex Deletion $\leq_{p} k-S C 1 S-R C$

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ and an integer $k \geq 0$. Question: Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

Biconvex Vertex Deletion problem is NP-complete ${ }^{5}$.

[^18]
NP-completeness of $k-S C 1 S-R C$

Biconvex Vertex Deletion $\leq_{p} k-S C 1 S-R C$

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ and an integer $k \geq 0$.
Question: Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

Biconvex Vertex Deletion problem is NP-complete ${ }^{5}$.

```
Transformation
A bipartite graph G=( (V1, V2,E), where }|\mp@subsup{V}{1}{}|=\mp@subsup{n}{1}{},|\mp@subsup{V}{2}{}|=\mp@subsup{n}{2}{}\mathrm{ and
|| =m.
Half-adjacency matrix }\mp@subsup{M}{\mp@subsup{G}{\mp@subsup{n}{1}{}\times\mp@subsup{n}{2}{}}{}}{}\mathrm{ .
```

[^19]
NP-completeness of $k-S C 1 S-R C$

- Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph \Leftrightarrow

NP-completeness of $k-S C 1 S-R C$

- Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph \Leftrightarrow there exists a set of rows and columns of size at most k in $M(G)$, whose deletion results in a matrix $M^{\prime}(G)$, that satisfy the $S C 1 P$.

NP-completeness of $k-S C 1 S-R C$

- Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph \Leftrightarrow there exists a set of rows and columns of size at most k in $M(G)$, whose deletion results in a matrix $M^{\prime}(G)$, that satisfy the SC1P.
- The above claim follows from the characterization of biconvex graphs relating its half-adjacency matrices and the SC1P.

NP-completeness of $k-S C 1 P-0 E$

k-Chain-Completion $\leq_{p} k-S C 1 P-0 E$

NP-completeness of $k-S C 1 P-0 E$

k-Chain-Completion $\leq_{p} k-S C 1 P-0 E$

Chain Graphs

- Bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ with a linear ordering of the vertices in $V_{1}{ }^{a}$.
- $\mathrm{N}\left(u_{1}\right) \subseteq \mathrm{N}\left(u_{2}\right) \subseteq \mathrm{N}\left(u_{3}\right) \subseteq \ldots \subseteq \mathrm{N}\left(u_{\left|V_{1}\right|}\right)$

[^20]
NP-completeness of $k-S C 1 P-0 E$

k-Chain-Completion $\leq_{p} k-S C 1 P-0 E$

Chain Graphs

- Bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ with a linear ordering of the vertices in $V_{1}{ }^{a}$.
- $\mathrm{N}\left(u_{1}\right) \subseteq \mathrm{N}\left(u_{2}\right) \subseteq \mathrm{N}\left(u_{3}\right) \subseteq \ldots \subseteq \mathrm{N}\left(u_{\left|V_{1}\right|}\right)$

[^21]
\[

$$
\begin{aligned}
& N\left(x_{3}\right)=\left\{y_{3}\right\} \\
& N\left(x_{2}\right)=\left\{y_{2}, y_{3}\right\} \\
& N\left(x_{1}\right)=\left\{y_{2}, y_{3}, y_{4}\right\} \\
& N\left(x_{4}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} \\
& N\left(x_{5}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\} \\
& N\left(x_{3}\right) \subseteq N\left(x_{2}\right) \subseteq N\left(x_{1}\right) \subseteq N\left(x_{4}\right) \subseteq N\left(x_{5}\right)
\end{aligned}
$$
\]

NP-completeness of $k-S C 1 P-0 E$

Chain Completion

- Finding a minimum number of non-edges to be added to a given bipartite graph so that the graph becomes a chain graph.

NP-completeness of $k-S C 1 P-0 E$

Chain Completion

- Finding a minimum number of non-edges to be added to a given bipartite graph so that the graph becomes a chain graph.
- The decision version of the problem - k-Chain Completion is NP-complete ${ }^{a}$.

[^22]
NP-completeness of $k-S C 1 P-0 E$

- The half adjacency matrix of a chain graph doesn't contain $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ as a submatrix and satisfies the $S C 1 P$.

Half-adjacency matrix of G

NP-completeness of $k-S C 1 P-0 E$

- A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, with $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$ and $|E|=m$, where $M_{G_{n_{1} \times n_{2}}}$ is the half adjacency matrix of G.
- Matrix $M=\left[\begin{array}{cc}J_{m, n} & M_{G_{n_{1} \times n_{2}}} \\ 0_{m, n} & J_{m, n}\end{array}\right]$

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & \mathbf{1} & \mathbf{0} & 0 \\
1 & 1 & \mathbf{0} & \mathbf{1} & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & \mathbf{1} & 1 & 1 & \mathbf{1} & \underline{\mathbf{0}} & 0 \\
1 & 1 & 1 & 1 & \mathbf{1} & 1 & 1 & \mathbf{0} & \mathbf{1} & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & \mathbf{0} & 1 & 1 & \mathbf{1} & \mathbf{1} & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

NP-completeness of $k-S C 1 P-0 E$

1	1	0
0	1	1
1	0	1

$M_{I_{1}}$

$$
\begin{aligned}
& \frac{\begin{array}{|llll|}
\hline 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
\hline
\end{array}}{M_{I_{2}}} \frac{\begin{array}{lllll|}
{\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right.} & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
\hline
\end{array}}{M_{I_{3}}} \\
& \begin{array}{|lllllll|}
\hline 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
\hline & M_{I_{4}}
\end{array}
\end{aligned}
$$

NP-completeness of k-SC1P-01E

$$
k \text {-Chain-Editing } \leq_{p} k-S C 1 P-01 E
$$

NP-completeness of k-SC1P-01E

k-Chain-Editing $\leq_{p} k$-SC1P-01E

Chain Editing

- Finding a minimum number of edges to be added and removed from a given bipartite graph so that the graph becomes a chain graph.
- The decision version of the problem, k-Chain Editing is NP-complete ${ }^{a}$.

[^23]
NP-completeness of $k-S C 1 P-01 E$

- A bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, with $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$ and $|E|=m$, where $M_{G_{n_{1} \times n_{2}}}$ is the half adjacency matrix of G.
- Matrix $M=\left[\begin{array}{cc}J_{m, m n} & M_{G} \\ 0_{m n, m n} & J_{m n, n}\end{array}\right]$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & \mathbf{1} & \mathbf{0} & 0 \\
1 & 1 & \mathbf{0} & \mathbf{1} & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccccccccc}
1 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & \cdots & \mathbf{1} & 1 & 1 & \mathbf{1} & \underline{\mathbf{0}} & 0 \\
1 & 1 & 1 & \cdots & \mathbf{1} & 1 & 1 & \mathbf{0} & \mathbf{1} & 0 \\
1 & 1 & 1 & \cdots & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & \cdots & \underline{\mathbf{0}} & 1 & 1 & \mathbf{1} & \mathbf{1} & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 1 & 1 & 1 & \mathbf{1}
\end{array}\right]
$$

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance:

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$.

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $\langle M, d\rangle$ - An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 S-R$: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 S-R$: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P?
$d-S C 1 S-C$: Does there exist a set of columns of size at most d in M whose deletion results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 S-R$: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P?
$d-S C 1 S-C$: Does there exist a set of columns of size at most d in M whose deletion results in a matrix with the SC1P?
$d-S C 1 S-R C$: Does there exist a set of rows and columns of size at most d in M whose deletion results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 S-R$: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P?
$d-S C 1 S-C$: Does there exist a set of columns of size at most d in M whose deletion results in a matrix with the SC1P?
$d-S C 1 S-R C$: Does there exist a set of rows and columns of size at most d in M whose deletion results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance:

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$.

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 P-1 E$: Does there exist a set of 1 -entries of size at most d in M whose flipping results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 P-1 E$: Does there exist a set of 1 -entries of size at most d in M whose flipping results in a matrix with the SC1P?
$d-S C 1 P-0 E$: Does there exist a set of 0 -entries of size at most d in M whose flipping results in a matrix with the SC1P?

Parameterized Versions of SC1S \& SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: $<M, d>-$ An $m \times n$ binary matrix M and an integer $d \geq 0$. Parameter: d.
$d-S C 1 P-1 E$: Does there exist a set of 1 -entries of size at most d in M whose flipping results in a matrix with the SC1P?
$d-S C 1 P-0 E$: Does there exist a set of 0 -entries of size at most d in M whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M whose flipping results in a matrix with the SC1P?

FPT algorithms for SC1S and SC1E problems

- Use forbidden submatrix characterization of SC1P.

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & . & . & . & 0 \\
0 & 1 & 1 & 0 & . & . & 0 \\
0 & 0 & 1 & 1 & 0 & . & 0 \\
. & . & . & . & . & . & . \\
0 & . & . & . & 0 & 1 & 1 \\
1 & 0 & . & . & . & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right]} \\
& M_{I_{k}}, k \geq 1(k+2 \text { rows and } \\
& k+2 \text { columns) } \\
& {\left[\begin{array}{llll}
{\left[\begin{array}{lll}
1 & 1 & 0
\end{array} 0\right.} \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

- fixed size forbidden submatrices:

$$
\left\{M_{2_{1}}, M_{22}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}, M_{2_{1}}^{\top}, M_{2_{2}}^{\top}, M_{3_{1}}^{\top}, M_{3_{2}}^{\top}, M_{3_{3}}^{\top}\right\} .
$$

FPT algorithms for SC1S and SC1E problems

- Use forbidden submatrix characterization of SC1P.

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
1 & 1 & 0 & . & . & . & 0 \\
0 & 1 & 1 & 0 & . & . & 0 \\
0 & 0 & 1 & 1 & 0 & . & 0 \\
. & . & . & . & . & . & . \\
0 & . & . & . & 0 & 1 & 1 \\
1 & 0 & . & . & . & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1
\end{array}\right]} \\
& M_{I_{k}}, k \geq 1(k+2 \text { rows and } \\
& k+2 \text { columns) } \\
& M_{21} \\
& M_{2} \\
& \begin{array}{c}
{\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]} \\
M_{3_{1}}
\end{array} \begin{array}{c}
{\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]}
\end{array} \begin{array}{c}
M_{3_{2}}
\end{array}\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \text { A subset of the forbidden submatrices for the } S C 1 P \text {. }
\end{aligned}
$$

- fixed size forbidden submatrices:
$\left\{M_{2_{1}}, M_{2_{2}}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}, M_{2_{1}}^{T}, M_{2_{2}}^{T}, M_{3_{1}}^{T}, M_{3_{2}}^{\top}, M_{3_{3}}^{T}\right\}$.
- $M_{l_{k}}$ and $M_{l_{k}}^{\top}$ (where $k \geq 1$): size unbounded.

FPT algorithms for SC1S and SC1E problems

- Use forbidden submatrix characterization of SC1P.
- fixed size forbidden submatrices :

$$
\left\{M_{2_{1}}, M_{2_{2}}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}, M_{2_{1}}^{T}, M_{2_{2}}^{T}, M_{3_{1}}^{T}, M_{3_{2}}^{T}, M_{3_{3}}^{T}\right\} .
$$

- $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$): size unbounded.
- Given a matrix M, detection of forbidden submatrices ${ }^{6}$
- Fixed size : in $O\left(m^{6} . n\right)$-time.

[^24]
FPT algorithms for SC1S and SC1E problems

- Use forbidden submatrix characterization of SC1P.
- fixed size forbidden submatrices :

$$
\left\{M_{2_{1}}, M_{2_{2}}, M_{3_{1}}, M_{3_{2}}, M_{3_{3}}, M_{2_{1}}^{T}, M_{2_{2}}^{T}, M_{3_{1}}^{T}, M_{3_{2}}^{\top}, M_{3_{3}}^{T}\right\} .
$$

- $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$): size unbounded.
- Given a matrix M, detection of forbidden submatrices ${ }^{6}$
- Fixed size : in $O\left(m^{6} . n\right)$-time.
- $M_{l_{k}}$ and $M_{l_{k}}^{T}($ where $k \geq 1): O\left(m^{3} n^{3}\right)$-time.

[^25]
An FPT algorithm for $d-S C 1 S-R$ problem

Find a fixed size forbicer sub nat ix amen on the number of rows $\left\langle M_{1}, \widehat{\left.d_{1}\right\rangle\left\langle M_{2}, d_{2}\right\rangle\left\langle M_{3}, d_{3}\right\rangle\left\langle M_{4}, d_{4}\right\rangle\left\langle M_{5}, d_{5}\right\rangle\left\langle M_{6}\right.}, d_{6}\right\rangle$ $\cdots \cdots \cdots$

Apply d-COS-R R^{1} algorithm to each of the leaf instances to destroy $M_{I_{k}}$ and $M_{I_{k}}^{T}$.

[^26]d-COS-R subroutine runs in $O^{*}\left(8^{d}\right)$ - time. (O^{*} notation ignores the polynomial factors and focuses on exponential part.)

An FPT algorithm for $d-S C 1 S-R$ problem

```
d-COS-R
Instance: A binary matrix M and an integer d \geq0.
Question:
```


An FPT algorithm for $d-S C 1 S-R$ problem

```
d-COS-R
Instance: A binary matrix M and an integer d \geq0.
Question: Does there exist a set of rows of size at most d in M, whose deletion results in a matrix with the \(C 1 P\) for rows?
```


An FPT algorithm for $d-S C 1 S-R$ problem

d-COS-R

Instance: A binary matrix M and an integer $d \geq 0$.
Question: Does there exist a set of rows of size at most d in M, whose deletion results in a matrix with the $C 1 P$ for rows?

1	1	0	0	0	0
0	0	1	1	0	0
0	0	0	0	1	1
1	0	1	0	1	0
$M_{\text {IV }}$					

An FPT algorithm for $d-S C 1 S-R$ problem

- One of the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except $M_{I_{k}}$.

An FPT algorithm for $d-S C 1 S-R$ problem

- One of the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except $M_{I_{k}}$.

An FPT algorithm for $d-S C 1 S-R$ problem

- One of the the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except $M_{I_{k}}$.
- Applying d-COS-R algorithm on a leaf instance destroys only forbidden matrices of type $M_{l_{k}}$.

An FPT algorithm for $d-S C 1 S-R$ problem

- d_{1} row deletions - destroying fixed-size forbidden matrices.
- d_{2} row deletions - destroying $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$)
- $d_{1}+d_{2} \leq d$.
- Time taken to destroy the finite size forbidden matrices is $O\left(6^{d_{1}}\right)$
- Time taken to destroy the non-finite size forbidden matrices is $O\left(8^{d_{2}}\right)$.
- Total run-time of the algorithm is $O^{*}\left(8^{d}\right)$.

An FPT algorithm for $d-S C 1 P-0 E$

Observation

The representing graph of an $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$) is a chordless cycle of length $2 k+4$.

	$\begin{array}{llll}y_{1} & y_{2} & y_{3}\end{array}$		
x_{1}	1	1	0
x_{2}	0	1	1
x_{3}	1	0	1

Representing graph $G_{M_{I_{1}}}$

An FPT algorithm for $d-S C 1 P-0 E$

Observation

The representing graph of an $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$) is a chordless cycle of length $2 k+4$.

$y_{1} y_{2}$
$x_{1}$$y_{3}$ x_{2} 1 1
x_{3}
0
:---
1

- Flipping a 0 -entry in M is equivalent to adding an edge in the representing graph of M.

An FPT algorithm for $d-S C 1 P-0 E$

Observation

The representing graph of an $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$) is a chordless cycle of length $2 k+4$.

y_{1}
x_{1}
x_{2}
x_{2}
x_{3}

0 \& 1 \& 1

1 \& 0 \& 1\end{array}\right]\)
$M_{I_{1}}$

- Flipping a 0-entry in M is equivalent to adding an edge in the representing graph of M.
- To destroy $M_{l_{k}}$ and $M_{l_{k}}^{T}$ sufficient to destroy chordless cycles of length greater than four in the representing graph of M.

Representing graph $G_{M_{I_{1}}}$

Chordal Bipartite graph

- A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

Chordal Bipartite graph

- A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

No of edges to be added $=1$

Chordal Bipartite graph

- A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

No of edges to be added $=1$

No of edges to be added $=2$

An FPT algorithm for $d-S C 1 P-0 E$

Lemma1

Let $H=\left(V_{1}, V_{2}, E\right)$ be a chordless cycle of length $2 k+4$ (where $\left.k \geq 1\right)$. Then, the minimum number of edges to be added to H so that H is chordal bipartite is k and the number of ways to do this is at most $6.75^{k+1 a}$.

[^27]
Corollary

The minimum number of 0 -flippings required to destroy an $M_{l_{k}}$ or $M_{l_{k}}^{T}$, where $k \geq 1$ is k.

Lemma2

The total time required to destroy all $M_{l_{k}}$ and $M_{l_{k}}^{T}$ in M is $O^{*}\left(6.75^{d}\right)$.

An FPT algorithm for $d-S C 1 P-0 E$

- Given a binary matrix M and a nonnegative integer d,
- If M has a forbidden matrix of type $M_{l_{k}}$ and $M_{l_{k}}^{T}$ where $k>d$, immediately return NO.
- Otherwise find a minimum size forbidden matrix in M and branch into at most 18 subcases.
- Running time : $O^{*}\left(18^{d}\right)$.

An FPT algorithm for $d-S C 1 S-R C$ problem

- Reduce each of the leaf instance to an instance of Chordal Vertex Deletion ${ }^{7}$ problem.

[^28]
An FPT algorithm for $d-S C 1 S-R C$ problem

- Reduce each of the leaf instance to an instance of Chordal Vertex Deletion ${ }^{7}$ problem.

[^29]
An FPT algorithm for $d-S C 1 S-R C$ problem

- Reduce each of the leaf instance to an instance of Chordal Vertex Deletion ${ }^{7}$ problem.
- Kill shorter chordless cycles of lenth six, eight and ten.

[^30]
An FPT algorithm for $d-S C 1 S-R C$ problem

- Reduce each of the leaf instance to an instance of Chordal Vertex Deletion ${ }^{7}$ problem.
- Kill shorter chordless cycles of lenth six, eight and ten.
- Reduce each four cycle to an edge.

[^31]
An FPT algorithm for $d-S C 1 S-R C$ problem

- Reduce each of the leaf instance to an instance of Chordal Vertex Deletion ${ }^{7}$ problem.
- Kill shorter chordless cycles of lenth six, eight and ten.
- Reduce each four cycle to an edge.
- Remove all degree 1 vertices.

[^32]
An FPT algorithm for $d-S C 1 S-R C$ problem

- d_{1} row deletions for destroying fixed-size forbidden matrices.
- d_{2} row deletions for destroying $M_{l_{k}}$ and $M_{l_{k}}^{T}$ (where $k \geq 1$)
- $d_{1}+d_{2} \leq d$.
- Time taken to destroy the finite size forbidden matrices is $O\left(11^{d_{1}}\right)$
- Chordal Vertex Deletion algorithm runs in $O^{*}\left(2^{d_{2} / \log d_{2}}\right)$.
- Total run-time of the algorithm is $O^{*}\left(2^{\text {dlogd }}\right)$.

FPT algorithm for $d-S C 1 S-R$ on $(2, *)^{8}$-matrices

- Forbidden submatrices :

$$
M_{3_{1}}^{T}, M_{t_{k}}(k \geq 1), M_{t_{k}}^{T}(k \geq 1)
$$

${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones per row

FPT algorithm for d-SC1S-R on $(2, *)^{8}$-matrices

- Forbidden submatrices :
$M_{3_{1}}^{T}, M_{l_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

FPT algorithm for d-SC1S-R on $(2, *)^{8}$-matrices

- Forbidden submatrices:
$M_{3_{1}}^{T}, M_{l_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones per row

FPT algorithm for $d-S C 1 S-R$ on $(2, *)^{8}$-matrices

- Forbidden submatrices:
$M_{3_{1}}^{T}, M_{l_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

- Preprocess the resultant matrix M to remove identical rows and columns.
${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones per row

FPT algorithm for $d-S C 1 S-R$ on $(2, *)^{8}$-matrices

- Forbidden submatrices :
$M_{3_{1}}^{T}, M_{t_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

- Preprocess the resultant matrix M to remove identical rows and columns.
- If M still does not have $S C 1 P$, then remaining forbidden submatrices are pairwise disjoint.
${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones perrow

FPT algorithm for d-SC1S-R on $(2, *)^{8}$-matrices

- Forbidden submatrices:
$M_{3_{1}}^{T}, M_{l_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

- Preprocess the resultant matrix M to remove identical rows and columns.
- If M still does not have SC1P, then remaining forbidden submatrices are pairwise disjoint.
${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones per row

FPT algorithm for $d-S C 1 S-R$ on $(2, *)^{8}$-matrices

- Forbidden submatrices:
$M_{3_{1}}^{T}, M_{l_{k}}(k \geq 1), M_{l_{k}}^{T}(k \geq 1)$
- Destroy every submatrix of type $M_{3_{1}}^{T}$ in M.

- Preprocess the resultant matrix M to remove identical rows and columns.
- If M still does not have SC1P, then remaining forbidden submatrices are
 pairwise disjoint
${ }^{8} \mathrm{~A}(2, *)$-matrix have at most two ones per column and any number of ones perrow

FPT algorithm for $d-S C 1 S-R$ on $(2, *)$-matrices

- Uses a search tree.
- Each node : four subproblems.
- Size of search tree : $O\left(4^{d}\right)$.
- A submatrix isomorphic to $M_{3_{1}}^{T}$: $O\left(m^{4} n\right)$-time.
- Time required for Stage 1 : $O\left(4^{d} m^{4} n\right)$.
- $M_{l_{k}}$ and $M_{l_{k}}^{T}: O\left(n^{3} m^{3}\right)$ time.
- Number of $M_{l_{k}}$ and $M_{l_{k}}^{T}$ in M : $O(\min (m, n))$
- Size of search tree: $O\left(4^{d}\right)$.
- Time required for Stage 2 : $O\left(4^{d} m^{3} n^{3}\right)$.
- Total time complexity : $O\left(4^{d}\left(m^{4} n+m^{3} n^{3}\right)\right)$
$d-S C 1 S-R$ on a $(2, *)$-matrix $M_{m \times n}$, can be solved in $O^{*}\left(4^{d}\right)$-time, where d denotes the number of rows that can be deleted. Consequently it is FPT.

Concluding Remarks

- Decision versions of SC1S \& SC1E problems : poly-time solvable on $(2,2)^{9}$-matrices.

Parameterized results

Problem	$(2, *)$-matrix	$(*, 2)$-matrix	general-matrix
$d-S C 1 S-R \backslash C$	$O^{*}\left(4^{d} \backslash 3^{d}\right)$	$O^{*}\left(3^{d} \backslash 4^{d}\right)$	$O^{*}\left(8^{d}\right)$
$d-S C 1 S-R C$	$O^{*}\left(7^{d}\right)$	$O^{*}\left(7^{d}\right)$	$O^{*}\left(2^{d l o g d}\right)$
$d-S C 1 P-0 E$	-	-	$O^{*}\left(18^{d}\right)$
$d-S C 1 P-1 E$	$O^{*}\left(6^{d}\right)$	$O^{*}\left(6^{d}\right)$	$?$
$d-S C 1 P-01 E$	-	-	$?$

${ }^{9}(2,2)$-matrix have at most two ones per row and at most two ones per column

Thank COou

[^0]: Recent Trends in Algorithms
 National Institute of Science Education and Research

[^1]: ${ }^{1}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^2]: ${ }^{2}$ K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

[^3]: ${ }^{a}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^4]: ${ }^{a}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^5]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^6]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^7]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^8]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^9]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^10]: ${ }^{3}$ Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009.

[^11]: ${ }^{4}$ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BMC bioinformatics $\not 7$ (1) (2006) 119 .

[^12]: ${ }^{4}$ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BMC bioinformatics $\not 7$ (1) (2006) 119 .

[^13]: ${ }^{4}$ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BMC bioinformatics 7 (1) (2006) 119.

[^14]: ${ }^{a}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^15]: ${ }^{a}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^16]: ${ }^{a}$ Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

[^17]: ${ }^{5}$ Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

[^18]: ${ }^{5}$ Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

[^19]: ${ }^{5}$ Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

[^20]: ${ }^{a}$ Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification problems. Lecture notes in computer science, pages 6577, 1999.

[^21]: ${ }^{a}$ Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification problems. Lecture notes in computer science, pages 6577, 1999.

[^22]: ${ }^{a}$ PI Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.

[^23]: ${ }^{a}$ PI Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.

[^24]: ${ }^{6}$ Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive Ones Property. Cuvillier, 2009.

[^25]: ${ }^{6}$ Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive Ones Property. Cuvillier, 2009.

[^26]: ${ }^{1}$ N. Narayanaswamy, R. Subashini, Obtaining matrices with the consecutive ones property by row deletions, Algorithmica 71 (3) (2015) 758773.

[^27]: ${ }^{a}$ H. Kaplan, R. Shamir, R. E. Tarjan, Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs, SIAM Journal on Computing 28 (5) (1999) 19061922.

[^28]: ${ }^{7}$ Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.

[^29]: ${ }^{7}$ Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.

[^30]: ${ }^{7}$ Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.

[^31]: ${ }^{7}$ Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.

[^32]: ${ }^{7}$ Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.

