Simultaneous Consecutive Ones Submatrix and Editing Problems: Classical Complexity & Fixed-Parameter Tractable Results

Rani M R

Joint work with R. Subashini and Mohith Jagalmohanan National Institute of Technology Calicut, India.

Recent Trends in Algorithms National Institute of Science Education and Research

SC1P

1 Simultaneous Consecutive Ones Problem

3 Results

- Classical Complexity Results
- Fixed-Parameter Tractable Results

4 Concluding Remarks

 Does a given binary matrix have the simultaneous consecutive ones property (SC1P) ?

¹Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972) $\langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Box \rangle \rangle \langle \Xi \rangle \rangle \langle \Xi \rangle$

Simultaneous Consecutive Ones Property

• Permute the rows and columns so that the ones appear consecutively in every column and every row.

Simultaneous Consecutive Ones Property

• Permute the rows and columns so that the ones appear consecutively in every column and every row.

Simultaneous Consecutive Ones Property

• Permute the rows and columns so that the ones appear consecutively in every column and every row.

A matrix having the SC1P

• Not all binary matrices have the SC1P.

²K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

• Not all binary matrices have the SC1P.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

A matrix not having the SC1P

²K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

• Not all binary matrices have the SC1P.

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

A matrix not having the SC1P

• Testing SC1P - linear time ²

²K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.

Characterization of SC1P

A binary matrix M has the SC1P if and only if no submatrix of M is a member of the *configuration* of M_{I_k} ($k \ge 1$), M_{2_1} , M_{2_2} , M_{3_1} , M_{3_2} , M_{3_3} or their transposes ^a.

^aAlan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

 $\begin{bmatrix} 1 & 1 & 0 & . & . & . & 0 \\ 0 & 1 & 1 & 0 & . & . & 0 \\ 0 & 0 & 1 & 1 & 0 & . & . & 0 \\ 0 & 0 & 1 & 1 & 0 & . & . & 0 \\ 0 & . & . & . & 0 & 1 & 1 \\ 1 & 0 & . & . & . & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ k + 2 \text{ columns} \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

6 / 72

SC1P

Characterization of SC1P

A binary matrix M has the SC1P if and only if no submatrix of M is a member of the *configuration* of M_{I_k} ($k \ge 1$), M_{2_1} , M_{2_2} , M_{3_1} , M_{3_2} , M_{3_3} or their transposes ^a.

^aAlan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... $\rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb$

Simultaneous Consecutive Ones Submatrix (SC1S) problems SC1S-row deletion.

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... $\rightarrow \langle \mathbb{P} \rangle \land \mathbb{P} \land \mathbb{P} \rangle \land \mathbb{P} \land$

- SC1S-row deletion.
- SC1S-column deletion.

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... $\rightarrow \langle \mathbb{P} \rangle \land \mathbb{P} \land \mathbb{P} \rangle \land \mathbb{P} \land$

- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row & column deletion.

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... $\rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb$

- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row & column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... > () > (

- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row & column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
 - SC1P-0-flipping

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... $\rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb$

- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row & column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
 - SC1P-0-flipping
 - SC1P-1-flipping ³

³Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem. Theoretical Computer Science, 410(21-23):19861992, 2009... > () > (

- SC1S-row deletion.
- SC1S-column deletion.
- SC1S-row & column deletion.
- Simultaneous Consecutive Ones Editing (SC1E) problems
 - SC1P-0-flipping
 - SC1P-1-flipping ³
 - SC1P-01-flipping

• In Bioinformatics

⁴ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BM© bioinformatics ₹ (1) (2006) 119. ○

Applications

- In Bioinformatics
 - To discover functionally meaningful patterns from gene expression data⁴.

⁴ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BM© bioinformatics ₹ (1) (2006) 119. ○

Applications

- In Bioinformatics
 - To discover functionally meaningful patterns from gene expression data⁴.

- Gene expression data mapped onto metabolic network.
- An adjacency matrix of metabolites was created.
- Consecutive ones clustering method used to obtain network clusters.

⁴ R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms, BM©bioinformatics 7 (1) (2006) 1192, ○

Biconvex Graphs

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

SC1P

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

Ordering of V_1 : x_1, x_2, x_3, x_4 Ordering of V_2 : y_1, y_2, y_3, y_4, y_5

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

SC1P

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

SC1P

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

Ordering of V_1 : x_1, x_2, x_3, x_4 Ordering of V_2 : y_1, y_2, y_3, y_4, y_5

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

Ordering of V_1 : x_1, x_2, x_3, x_4 Ordering of V_2 : y_1, y_2, y_3, y_4, y_5

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

Ordering of $V_1 : x_1, x_2, x_3, x_4$ Ordering of $V_2 : y_1, y_2, y_3, y_4, y_5$

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

SC1P

Ordering of V_1 : x_1, x_2, x_3, x_4 Ordering of V_2 : y_1, y_2, y_3, y_4, y_5

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

SC1P

Biconvex Graphs

A bipartite graph $G = (V_1, V_2, E)$ is *biconvex* if both V_1 and V_2 can be ordered so that for every vertex v in $V_1 \cup V_2$, neighbors of v occur consecutively in the ordering.

 $Ordering \ of \ V_1: \ x_1, x_2, x_3, x_4 \\ Ordering \ of \ V_2: \ y_1, y_2, y_3, y_4, y_5 \end{cases}$

Characterization of Biconvex graphs

A bipartite graph $G = (V_1, V_2, E)$ is biconvex if and only if its half adjacency matrix has the $SC1P^{a}$.

^aAlan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

Characterization of Biconvex graphs

A bipartite graph $G = (V_1, V_2, E)$ is biconvex if and only if its half adjacency matrix has the $SC1P^{a}$.

 a Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

Bipartite Graph
Characterization of Biconvex graphs

A bipartite graph $G = (V_1, V_2, E)$ is biconvex if and only if its half adjacency matrix has the $SC1P^{a}$.

 a Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B, 12(2):153162, 1972)

SC1P

Half-adjacency matrix

イロト イポト イヨト イヨト

Half-adjacency matrix of G, M(G)

A bipartite graph $G = (V_1, V_2, E)$ (not biconvex) $V_1 = \{x_1, x_2, x_3, x_4\}$ and $V_2 = \{y_1, y_2, y_3, y_4, y_5\}$

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

SC1S-row deletion \Leftrightarrow *Problem of finding a minimum number of vertices to* be deleted from V_1 , so that the resultant graph is biconvex.

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

ロト・「聞ト・言ト・言」のへの

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

SC1S-column deletion \Leftrightarrow Problem of finding a minimum number of vertices to be deleted from V₂, so that the resultant graph is biconvex.

Biconvex graphs : Vertex Deletion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Vertex Deletion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

□ > < 団 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Biconvex graphs : Vertex Deletion

A bipartite graph G (not biconvex)

SC1S-row & column deletion \Leftrightarrow Problem of finding a minimum number of vertices to be deleted from $V_1 \cup V_2$, so that the resultant graph is biconvex.

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Completion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Completion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

SC1P-0-Flipping \Leftrightarrow Problem of finding a minimum number of non-edges to be added to G, so that the resultant graph is biconvex.

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Edge Deletion

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

SC1P-1-Flipping \Leftrightarrow Problem of finding a minimum number of edges to be deleted from G, so that the resultant graph is biconvex.

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Edge Modification

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

Biconvex graphs : Edge Modification

A bipartite graph G (not biconvex)

Half-adjacency matrix of G, M(G)

SC1P-01-Flipping \Leftrightarrow Problem of finding a minimum number of edges to be added/deleted to/from G, so that the resultant graph is biconvex.

• Decision version of SC1S and SC1E problems are NP-complete.

(ロト 《御 と 《 臣 と 《 臣 と ― 臣 ― 釣ん()

Transformation

Graph G = (V, E), where |V| = n and |E| = m. Edge vertex incidence matrix $M(G)_{m \times n}$, where k = |m| - |n| + 1.

Transformation

Graph G = (V, E), where |V| = n and |E| = m. Edge vertex incidence matrix $M(G)_{m \times n}$, where k = |m| - |n| + 1.

• G has a Hamiltonian path \Leftrightarrow

Transformation

Graph G = (V, E), where |V| = n and |E| = m. Edge vertex incidence matrix $M(G)_{m \times n}$, where k = |m| - |n| + 1.

G has a Hamiltonian path ⇔ there exists a set of rows of size k in M(G) whose deletion results in a matrix M'(G), that satisfy the SC1P.

Forward direction:

Forward direction:

SC1P

	v_1	v_2	V3	<i>V</i> 4	V_5	v_6
$\{v_1, v_4\}$	(1)	0	0	1	0	0 \
$\{v_1, v_2\}$	1	1	0	0	0	0
$\{v_2, v_3\}$	0	1	1	0	0	0
$\{v_3, v_4\}$	0	0	1	1	0	0
$\{v_4, v_5\}$	0	0	0	1	1	0
$\{v_3, v_5\}$	0	0	1	0	1	0
$\{v_3, v_6\}$	0	0	1	0	0	1
$\{v_4, v_6\}$	0/	0	0	1	0	1/

G

M(G)

æ

3 K K 3 K

Forward direction:

SC1P

	v_1	v_2	V3	V_4	V_5	v_6
$\{v_1, v_4\}$	(1)	0	0	1	0	0 \
$\{v_1, v_2\}$	1	1	0	0	0	0
$\{v_2, v_3\}$	0	1	1	0	0	0
$\{v_3, v_4\}$	0	0	1	1	0	0
$\{v_4, v_5\}$	0	0	0	1	1	0
$\{v_3, v_5\}$	0	0	1	0	1	0
$\{v_3, v_6\}$	0	0	1	0	0	1
$\{v_4, v_6\}$	0/	0	0	1	0	1/

G

M(G)

æ

3 K K 3 K

Forward direction:

	v_1	<i>v</i> ₂	V3	<i>V</i> 4	v_5	v ₆
$\{v_1, v_4\}$	1^{1}	0	0	1	0	0
$\{v_1, v_2\}$	1	1	0	0	0	0
$\{v_2, v_3\}$	0	1	1	0	0	0
$\{v_3, v_5\}$	0	0	1	0	1	0
$\{v_4, v_6\}$	\ ₀	0	0	1	0	$_{1}$ /

 $M^{\prime}(G)$

< □ > < @ > < 글 > < 글 > 글 ♡ < < 41 / 72

Forward direction:

	v_1	<i>v</i> ₂	V3	<i>V</i> 4	V_5	V ₆		
$\{v_1, v_4\}$	(1)	0	0	1	0	0		
$\{v_1, v_2\}$	1	1	0	0	0	0		
$\{v_2, v_3\}$	0	1	1	0	0	0		
$\{v_3, v_5\}$	0	0	1	0	1	0		
$\{v_4, v_6\}$	\ ₀	0	0	1	0	1/		
$M^{'}(G)$								

G

Rearrange the rows and columns of M'(G) with respect to the sequence of edges and vertices respectively in the hamiltonian path.

Forward direction:

	v_1	<i>v</i> ₂	V3	<i>V</i> 4	V_5	V ₆		
$\{v_1, v_4\}$	(1)	0	0	1	0	0		
$\{v_1, v_2\}$	1	1	0	0	0	0		
$\{v_2, v_3\}$	0	1	1	0	0	0		
$\{v_3, v_5\}$	0	0	1	0	1	0		
$\{v_4,v_6\}$	0/	0	0	1	0	$_{1}$ /		
$M^{'}(G)$								

G

Rearrange the rows and columns of M'(G) with respect to the sequence of edges and vertices respectively in the hamiltonian path.

	v ₆	<i>v</i> 4	v_1	<i>v</i> ₂	V ₃	V_5
$\{v_6, v_4\}$	(1)	1	0	0	0	0
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_3, v_5\}$	/0	0	0	0	1	1/

M

Reverse direction:

	V ₆	V4	v_1	V_2	V3	V_5
$\{v_6, v_4\}$	(1)	1	0	0	0	0 \
$\{v_3, v_6\}$	1	0	0	0	1	0
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_4, v_5\}$	0	1	0	0	0	1
$\{v_3, v_5\}$	0	0	0	0	1	1
$\{v_4, v_3\}$	0/	1	0	0	1	0/

М

Reverse direction:

	V ₆	V4	v_1	v_2	V3	V_5
$\{v_6, v_4\}$	(1)	1	0	0	0	0 \
$\{v_3, v_6\}$	1	0	0	0	1	0
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_4, v_5\}$	0	1	0	0	0	1
$\{v_3, v_5\}$	0	0	0	0	1	1
$\{v_4, v_3\}$	0/	1	0	0	1	0/

	V_6	V4	v_1	<i>v</i> ₂	V3	V_5
$\{v_6, v_4\}$	1^{1}	1	0	0	0	0
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_3, v_5\}$	/0	0	0	0	1	1/

М

Reverse direction:

	V_6	v_4	v_1	v_2	V_3	v_5		Ve	V٨	V_1	Vo	Va	VE		
$\{v_6, v_4\}$	(1)	1	0	0	0	0)	()	. 1	1	0	0	• •	0.		
$\{v_3, v_6\}$	1	0	0	0	1	0	$\{v_6, v_4\}$	1	T	0	0	0	0		
$\{v_1, v_4\}$	0	1	1	0	0	0	$\{v_1, v_4\}$	0	1	1	0	0	0		
$\{v_1, v_2\}$	0	0	1	1	0	0	$\int \sqrt{1} \sqrt{1} \sqrt{1}$	0	Ο	1	1	0			
$\{v_2, v_3\}$	0	0	0	1	1	0	[1, 2]	0	0	-	1	0			
$\{v_4, v_5\}$	0	1	0	0	0	1	$\{v_2, v_3\}$	0	0	0	1	1	0		
$\{v_3, v_5\}$	0	0	0	0	1	1	$\{V_2, V_5\}$	10	0	0	0	1	1/		
$\{v_4, v_3\}$	0/	1	0	0	1	0/	[*3,*5]		Ŭ	Ŭ	Ŭ	-	1 /		
									•	í í					
М							IVI								

Consider G', the subgraph obtained from M' by considering M' as an edge- vertex incidence matrix.

SC1P

Reverse direction:

	V ₆	V4	v_1	V_2	V3	V_5
$\{v_6, v_4\}$	(1)	1	0	0	0	0 \
$\{v_3, v_6\}$	1	0	0	0	1	0
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_4, v_5\}$	0	1	0	0	0	1
$\{v_3, v_5\}$	0	0	0	0	1	1
$\{v_4, v_3\}$	0/	1	0	0	1	0/

	V_6	V_4	v_1	<i>v</i> ₂	V3	V_5
$\{v_6, v_4\}$	1/	1	0	0	0	0 \
$\{v_1, v_4\}$	0	1	1	0	0	0
$\{v_1, v_2\}$	0	0	1	1	0	0
$\{v_2, v_3\}$	0	0	0	1	1	0
$\{v_3, v_5\}$	\ ₀	0	0	0	1	1/

М

Consider G', the subgraph obtained from M' by considering M' as an edge- vertex incidence matrix.

• *k-SC1S-C* problem : transpose of *k-SC1S-R* problem.

NP-completeness of *k-SC1S-C*

- consider *M* as the vertex-edge incidence matrix.
- k as the number of columns to be deleted.

Biconvex Vertex Deletion $\leq_p k$ -SC1S-RC

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G = (V_1, V_2, E)$ and an integer $k \ge 0$. *Question:* Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

⁵Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

Biconvex Vertex Deletion $\leq_p k$ -SC1S-RC

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G = (V_1, V_2, E)$ and an integer $k \ge 0$. *Question:* Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

Biconvex Vertex Deletion problem is NP-complete ⁵.

⁵Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

Biconvex Vertex Deletion $\leq_p k$ -SC1S-RC

BICONVEX VERTEX DELETION

Instance: A bipartite graph $G = (V_1, V_2, E)$ and an integer $k \ge 0$. *Question:* Does there exist a set of vertices of size at most k in G, whose deletion results in a biconvex graph?

Biconvex Vertex Deletion problem is NP-complete ⁵.

Transformation

A bipartite graph $G = (V_1, V_2, E)$, where $|V_1| = n_1$, $|V_2| = n_2$ and |E| = m. Half-adjacency matrix $M_{G_{n_1 \times n_2}}$.

⁵Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing, 10(2):310327, 1981.

 Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph ⇔

 Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph ⇔ there exists a set of rows and columns of size at most k in M(G), whose deletion results in a matrix M'(G), that satisfy the SC1P.

- Claim: G has a set of vertices of size at most k, whose deletion results in a biconvex graph ⇔ there exists a set of rows and columns of size at most k in M(G), whose deletion results in a matrix M'(G), that satisfy the SC1P.
- The above claim follows from the characterization of biconvex graphs relating its half-adjacency matrices and the *SC1P*.

k-CHAIN-COMPLETION $\leq_p k$ -*SC*1*P*-0*E*

▲口 ▶ ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ ▲臣 ● のへで

k-CHAIN-COMPLETION $\leq_p k$ -*SC*1*P*-0*E*

Chain Graphs

- Bipartite graph G = (V₁, V₂, E) with a linear ordering of the vertices in V₁^a.
- $N(u_1) \subseteq N(u_2) \subseteq N(u_3) \subseteq \ldots \subseteq N(u_{|V_1|})$

^aAssaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification problems. Lecture notes in computer science, pages 6577, 1999.

k-CHAIN-COMPLETION $\leq_p k$ -*SC*1*P*-0*E*

Chain Graphs

- Bipartite graph G = (V₁, V₂, E) with a linear ordering of the vertices in V₁^a.
- $N(u_1) \subseteq N(u_2) \subseteq N(u_3) \subseteq \ldots \subseteq N(u_{|V_1|})$

^aAssaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification problems. Lecture notes in computer science, pages 6577, 1999.

CHAIN COMPLETION

• Finding a minimum number of non-edges to be added to a given bipartite graph so that the graph becomes a chain graph.

イロト 不得 トイヨト イヨト 二日

CHAIN COMPLETION

- Finding a minimum number of non-edges to be added to a given bipartite graph so that the graph becomes a chain graph.
- The decision version of the problem *k*-CHAIN COMPLETION is NP-complete ^{*a*}.

^aPI Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.

• The half adjacency matrix of a chain graph doesn't contain $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as a submatrix and satisfies the SC1P.

Transformation

• A bipartite graph $G = (V_1, V_2, E)$, with $|V_1| = n_1$, $|V_2| = n_2$ and |E| = m, where $M_{G_{n_1 \times n_2}}$ is the half adjacency matrix of G.

• Matrix $M = \begin{bmatrix} J_{m,n} & M_{G_{n_1 \times n_2}} \\ 0_{m,n} & J_{m,n} \end{bmatrix}$

						Γ1	1	1	1	1	1	0	0	0	[0	
						1	1	1	1	1	1	1	0	0	0	
Г1	0	Δ	0	Γ٥		1	1	1	1	<u>1</u>	1	1	<u>1</u>	<u>0</u>	0	
	1	0	0			1	1	1	1	<u>1</u>	1	1	<u>0</u>	<u>1</u>	0	
	1 1	1	0		,	1	1	1	1	1	1	1	1	1	1	
	1	1	1		\Rightarrow	0	0	0	0	0	1	1	1	1	1	
	1 1	U 1	1			0	0	0	0	0	1	1	1	1	1	
Γī	T	T	T	тJ		0	0	0	0	0	1	1	1	1	1	
						0	0	0	0	0	1	1	1	1	1	
						Lo	0	0	0	0	1	1	1	1	1	

k-CHAIN-EDITING $\leq_p k$ -SC1P-01E

▲日▼▲□▼▲田▼▲田▼ 回 2000

k-CHAIN-EDITING $\leq_p k$ -SC1P-01E

CHAIN EDITING

- Finding a minimum number of edges to be added and removed from a given bipartite graph so that the graph becomes a chain graph.
- The decision version of the problem, *k*-CHAIN EDITING is NP-complete^{*a*}.

SC1P

^aPI Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.

Transformation

• A bipartite graph $G = (V_1, V_2, E)$, with $|V_1| = n_1$, $|V_2| = n_2$ and |E| = m, where $M_{G_{n_1 \times n_2}}$ is the half adjacency matrix of G. • Matrix $M = \begin{bmatrix} J_{m,mn} & M_G \\ 0_{mn,mn} & J_{mn,n} \end{bmatrix}$

	11	T	T	• • •	T	T	0	0	0	0	
	1	1	1	• • •	1	1	1	0	0	0	
F/ A A A A7	1	1	1		<u>1</u>	1	1	<u>1</u>	<u>0</u>	0	
	1	1	1		<u>1</u>	1	1	<u>0</u>	<u>1</u>	0	
	1	1	1		1	1	1	1	1	1	
$\begin{vmatrix} 1 & 1 & 1 & 0 & 0 \end{vmatrix} \Rightarrow$	0	0	0		<u>0</u>	1	1	<u>1</u>	<u>1</u>	1	
$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \end{bmatrix}$	0	0	0	•••	0	1	1	1	1	1	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$	0	0	0		0	1	1	1	1	1	
	:	÷	÷	·	÷	÷	÷	÷	÷	:	
	Lo	0	0		0	1.	1-	▶1∢	≡1	< 1	•
		~									

Instance:

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

Instance: < M, d >- An $m \times n$ binary matrix M and an integer $d \ge 0$.

Instance: < M, d >- An $m \times n$ binary matrix M and an integer $d \ge 0$. *Parameter:* d.

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1S-R: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P?

SC1P

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1S-R: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P? d-SC1S-C: Does there exist a set of columns of size at most d in Mwhose deletion results in a matrix with the SC1P?

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1S-R: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P? d-SC1S-C: Does there exist a set of columns of size at most d in Mwhose deletion results in a matrix with the SC1P? d-SC1S-RC: Does there exist a set of rows and columns of size at most din M whose deletion results in a matrix with the SC1P?

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1S-R: Does there exist a set of rows of size at most d in M whose deletion results in a matrix with the SC1P? d-SC1S-C: Does there exist a set of columns of size at most d in Mwhose deletion results in a matrix with the SC1P? d-SC1S-RC: Does there exist a set of rows and columns of size at most din M whose deletion results in a matrix with the SC1P?

Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance:

▲口▶▲御▶▲臣▶▲臣▶ 臣 のへで

Instance: < M, d >- An $m \times n$ binary matrix M and an integer $d \ge 0$.

Instance: < M, d >- An $m \times n$ binary matrix M and an integer $d \ge 0$. *Parameter:* d.

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M whose flipping results in a matrix with the SC1P?

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1P-1E: Does there exist a set of 1-entries of size at most d in Mwhose flipping results in a matrix with the SC1P? d-SC1P-0E: Does there exist a set of 0-entries of size at most d in Mwhose flipping results in a matrix with the SC1P?

Instance: $\langle M, d \rangle$ - An $m \times n$ binary matrix M and an integer $d \ge 0$. Parameter: d. d-SC1P-1E: Does there exist a set of 1-entries of size at most d in Mwhose flipping results in a matrix with the SC1P? d-SC1P-0E: Does there exist a set of 0-entries of size at most d in Mwhose flipping results in a matrix with the SC1P? d-SC1P-01E: Does there exist a set of entries of size at most d in Mwhose flipping results in a matrix with the SC1P?

FPT algorithms for SC1S and SC1E problems

• Use forbidden submatrix characterization of SC1P.

 $\{M_{2_1}, M_{2_2}, M_{3_1}, M_{3_2}, M_{3_3}, M_{2_1}^T, M_{2_2}^T, M_{3_1}^T, M_{3_2}^T, M_{3_3}^T\}.$

55 / 72

SC1P

FPT algorithms for SC1S and SC1E problems

• Use forbidden submatrix characterization of SC1P.

SC1P

- Use forbidden submatrix characterization of SC1P.
 - fixed size forbidden submatrices : $\{M_{2_1}, M_{2_2}, M_{3_1}, M_{3_2}, M_{3_3}, M_{2_1}^T, M_{2_2}^T, M_{3_1}^T, M_{3_2}^T, M_{3_1}^T\}$.
 - M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$) : size unbounded.
- Given a matrix M, detection of forbidden submatrices ⁶
 - Fixed size : in $O(m^6.n)$ -time.

⁶Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive Ones Property. Cuvillier, 2009.
- Use forbidden submatrix characterization of SC1P.
 - fixed size forbidden submatrices : $\{M_{2_1}, M_{2_2}, M_{3_1}, M_{3_2}, M_{3_2}^T, M_{2_2}^T, M_{2_2}^T, M_{3_2}^T, M_{3_2}^T, M_{3_2}^T\}$.
 - M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$): size unbounded.
- Given a matrix M, detection of forbidden submatrices ⁶
 - Fixed size : in $O(m^6.n)$ -time.
 - M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$) : $O(m^3n^3)$ -time.

⁶Michael Dom. Recognition, Generation, and Application of Binary Matrices with the Consecutive Ones Property. Cuvillier, 2009.

Apply d-COS- R^1 algorithm to each of the leaf instances to destroy M_{I_k} and $M_{I_k}^T$.

 $^1 \rm N.$ Narayanaswamy, R. Subashini, Obtaining matrices with the consecutive ones property by row deletions, Algorithmica 71 (3) (2015) 758773.

d-COS-R subroutine runs in $O^*(8^d)$ - time. (O^* notation ignores the polynomial factors and focuses on exponential part.)

d-COS-R

Instance: A binary matrix M and an integer $d \ge 0$. Question:

d-COS-R

Instance: A binary matrix M and an integer $d \ge 0$. *Question:* Does there exist a set of rows of size at most d in M, whose deletion results in a matrix with the C1P for rows?

d-COS-R

Instance: A binary matrix M and an integer $d \ge 0$. *Question:* Does there exist a set of rows of size at most d in M, whose deletion results in a matrix with the C1P for rows?

 One of the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except M_{1k}.

 One of the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except M_{1k}.

- One of the the fixed-size forbidden matrices occurs as a submatrix of every matrix in the above figure except M_{lk}.
- Applying d-COS-R algorithm on a leaf instance destroys only forbidden matrices of type M_{l_k} .

SC1P

- d₁ row deletions destroying fixed-size forbidden matrices.
- d_2 row deletions destroying M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$)
- $d_1+d_2\leq d$.
- Time taken to destroy the finite size forbidden matrices is $O(6^{d_1})$
- Time taken to destroy the non-finite size forbidden matrices is $O(8^{d_2})$.
- Total run-time of the algorithm is $O^*(8^d)$.

An FPT algorithm for d-SC1P-0E

Observation

The representing graph of an M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$) is a chordless cycle of length 2k + 4.

An FPT algorithm for d-SC1P-0E

Observation

The representing graph of an M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$) is a chordless cycle of length 2k + 4.

• Flipping a 0-entry in *M* is equivalent to adding an edge in the representing graph of *M*.

An FPT algorithm for d-SC1P-0E

Observation

The representing graph of an M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$) is a chordless cycle of length 2k + 4.

- Flipping a 0-entry in *M* is equivalent to adding an edge in the representing graph of *M*.
- To destroy M_{l_k} and $M_{l_k}^T$ sufficient to destroy chordless cycles of length greater than four in the representing graph of M.

Chordal Bipartite graph

• A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

Chordal Bipartite graph

• A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

No of edges to be added = 1

Chordal Bipartite graph

• A chordal bipartite graph is a bipartite graph which does not contain chordless cycles of length greater than four.

No of edges to be added = 1

Lemma1

Let $H = (V_1, V_2, E)$ be a chordless cycle of length 2k + 4 (where $k \ge 1$). Then, the minimum number of edges to be added to H so that H is chordal bipartite is k and the number of ways to do this is at most 6.75^{k+1a} .

Corollary

The minimum number of 0-flippings required to destroy an M_{l_k} or $M_{l_k}^T$, where $k \ge 1$ is k.

Lemma2

The total time required to destroy all $M_{l_{\mu}}$ and $M_{l_{\mu}}^{T}$ in M is $O^{*}(6.75^{d})$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

^aH. Kaplan, R. Shamir, R. E. Tarjan, Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs, SIAM Journal on Computing 28 (5) (1999) 19061922.

• Given a binary matrix M and a nonnegative integer d,

- If *M* has a forbidden matrix of type M_{l_k} and $M_{l_k}^T$ where k > d, immediately return NO.
- Otherwise find a minimum size forbidden matrix in M and branch into at most 18 subcases.
- Running time : $O^*(18^d)$.

• Reduce each of the leaf instance to an instance of CHORDAL VERTEX DELETION ⁷ problem.

⁷Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137. • < 📃 • 🤤 🗸 🔍

• Reduce each of the leaf instance to an instance of CHORDAL VERTEX DELETION ⁷ problem.

⁷Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137. • < 📃 • 🤤 🗸 🔍

• Reduce each of the leaf instance to an instance of CHORDAL VERTEX DELETION ⁷ problem.

• Kill shorter chordless cycles of lenth six, eight and ten.

⁷Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137. • 📢 🗐 • 🗦 👘 🖉 🗠 🤉

• Reduce each of the leaf instance to an instance of CHORDAL VERTEX DELETION ⁷ problem.

- Kill shorter chordless cycles of lenth six, eight and ten.
- Reduce each four cycle to an edge.

⁷Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137. 🗰 🗧 🔊 🔍

• Reduce each of the leaf instance to an instance of CHORDAL VERTEX DELETION ⁷ problem.

- Kill shorter chordless cycles of lenth six, eight and ten.
- Reduce each four cycle to an edge.
- Remove all degree 1 vertices.

⁷Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137. 🔖 👍 📃 🔊 🔍

- d₁ row deletions for destroying fixed-size forbidden matrices.
- d_2 row deletions for destroying M_{l_k} and $M_{l_k}^T$ (where $k \ge 1$)
- $d_1+d_2\leq d$.
- Time taken to destroy the finite size forbidden matrices is $O(11^{d_1})$
- CHORDAL VERTEX DELETION algorithm runs in $O^*(2^{d_2 \log d_2})$.
- Total run-time of the algorithm is $O^*(2^{dlogd})$.

• Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$

 8 A (2, *)-matrix have at most two ones per column and any number of ones per row 4 2 > 4

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

⁸A (2, *)-matrix have at most two ones per column and any number of ones per Pow

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

⁸A (2, *)-matrix have at most two ones per column and any number of ones per row

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

• Preprocess the resultant matrix *M* to remove identical rows and columns.

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

- Preprocess the resultant matrix *M* to remove identical rows and columns.
- If *M* still does not have *SC1P*, then remaining forbidden submatrices are pairwise disjoint.

 8 A (2, *)-matrix have at most two ones per column and any number of ones per row

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

- Preprocess the resultant matrix *M* to remove identical rows and columns.
- If *M* still does not have *SC1P*, then remaining forbidden submatrices are pairwise disjoint.

⁸A (2, *)-matrix have at most two ones per column and any number of ones per row

- Forbidden submatrices : $M_{3_1}^T, M_{l_k} (k \ge 1), M_{l_k}^T (k \ge 1)$
 - Destroy every submatrix of type M^T₃₁ in M.

- Preprocess the resultant matrix *M* to remove identical rows and columns.
- If *M* still does not have *SC1P*, then remaining forbidden submatrices are pairwise disjoint.

⁸A (2, *)-matrix have at most two ones per column and any number of ones per Tow () + (=)

- Uses a search tree.
- Each node : four subproblems.
- Size of search tree : $O(4^d)$.
- A submatrix isomorphic to $M_{3_1}^T$: $O(m^4 n)$ -time.
- Time required for Stage 1 : $O(4^d m^4 n)$.

- M_{l_k} and $M_{l_k}^T$: $O(n^3m^3)$ time.
- Number of M_{l_k} and $M_{l_k}^T$ in M: O(min(m, n))
- Size of search tree : $O(4^d)$.
- Time required for Stage 2 : $O(4^d m^3 n^3)$.
- Total time complexity : $O(4^d(m^4n + m^3n^3))$

d-SC1S-R on a (2,*)-matrix $M_{m \times n}$, can be solved in $O^*(4^d)$ -time, where d denotes the number of rows that can be deleted. Consequently it is FPT.

• Decision versions of *SC1S* & *SC1E* problems : poly-time solvable on $(2,2)^9$ -matrices.

Parameterized results			
Problem	(2, *)-matrix	(*,2)-matrix	general-matrix
d -SC1S-R\C	$O^*(4^d \setminus 3^d)$	$O^*(3^d \setminus 4^d)$	$O^{*}(8^{d})$
d-SC1S-RC	$O^{*}(7^{d})$	$O^{*}(7^{d})$	$O^*(2^{dlogd})$
d-SC1P-0E	-	-	$O^{*}(18^{d})$
d-SC1P-1E	$O^{*}(6^{d})$	$O^{*}(6^{d})$?
<i>d-SC1P-</i> 01 <i>E</i>	-	-	?

 $^{^{9}(2,2)}$ -matrix have at most two ones per row and at most two ones per column 9 < 0

Thank You

