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NP-hard

Think of k-document search in
information retrieval!
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Prior Work and Open Question

General Coverage

• greedy gives a (1− 1/e)-approximation

• NP-hard to approximate within 1− 1/e+ ε for any ε > 0

Geometric Coverage
[Feige 1998]

[Cornuéjols, Nemhauser, Wolsey 1980]

• parameterized (1− ε)-approximation in f(k, ε) · poly(n)
time for set systems with bounded VC-dimension

[Badanidiyuru, Kleinberg, Lee 2012]

• exponential dependence on k cannot be removed as some
cases (such as halfspaces in R4) are APX-hard

Question: In which of the geometric cases that are not known
to be APX-hard (e.g. halfspaces in R3, pseudodisks in R2, . . . )
can we obtain a (true) PTAS?
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Set Cover

Given a ground set U , a set family F ⊆ 2U ,find a smallest
family S ⊆ F covering the whole ground set U

General Set Cover

• lnn-approximation via greedy

• NP-hard to approximate within (1− ε) lnn

[Chvátal 1979]

[Feige 1998, Dinur and Steurer 2014]

Geometric Set Cover
• many techniques and a large body of literature: ε-nets,

quasi-uniform sampling and many more . . .

• local search gives a PTAS for a multitude of problems:
halfspaces in R3, pseudodisks in R2, terrain guarding,. . .

[Mustafa & Ray 2009]
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• pick an integral parameter b > 0
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Exchange Graph

Let F1,F2 be feasible solutions. A graph with node set F1,F2

has the exchange property if for every u ∈ U covered by both
solutions there exist an edge (S1, S2) with u ∈ S1 ∩ S2 and
Si ∈ Fi

u
S2

S′2

S1

S′1

S2

S1

S′2

S′1

. . . . . . . . . . . .

feasible swap
. . .

. . .

[Mustafa & Ray 2009]

A N(A)7→



Subdividing Planar Exchange Graphs

V1

V2

V3

V4

Theorem (Frederickson 1987):

For every t > 0, planar G, V (G)
partitions as (V1, . . . , V`, X), ` = Θ(n/t)
such that
• |Vi ∪N(Vi)| = O(t), ∀i.
• X separates Vi from Vj , (∀i 6= j).
• |N(Vi)| = O(

√
t)
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Algorithm/Hurdles for Max Coverage

local search: swaps do not change cardinality of the solution
but improve number of covered elements

Hurdles

1. does exchange graph still reflect the objective function?

• maximization ⇔ covering is no hard constraint

• exchange graph takes into account only elements covered
by both solution but no individual elements

2. color-imbalanced subdivisions conflict with hard cardinality
constraint

[this work]
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• maximum k-dominating set on non-trivial minor-closed
graph classes

• maximum k-vertex cover on f -separable on subgraph-closed
graphclasses

• . . .



Our Results
Theorem:There is a PTAS for any class of max coverage
problems that admits planar (f -separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

• covering points with halfspaces in R3

• covering points with pseudodisks in R2

• hitting pseudodisks (r-admissable regions) in R2 by points
• guarding 1.5D terrains
• maximum k-dominating set for intersection graphs of

homethetic copies of convex objects (such as arbitrary
squares, translated and scaled copies of convex objects)

• maximum k-dominating set on non-trivial minor-closed
graph classes

• maximum k-vertex cover on f -separable on subgraph-closed
graphclasses

• . . .

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012
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Theorem: For every t > 0, planar two-colored G with V (G) = R ∪B
and |B| = |R|, V (G) partitions as (V1, . . . , V`, X), ` = Θ(n/t) such that
• |Vi ∪N(Vi)| = Θ(t), ∀i.
• X separates Vi from Vj , (∀i 6= j).
• |N(Vi)| = O(t3/4), ∀i
• ||Vi ∩R| − |Vi ∩B|| = O(

√
t), ∀i

2. Obtain a significantly profitable, almost balanced swap

3. Use submodularity to get a perfectly balanced and (still)
profitable swap

[this work]
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From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

min
i

|Li|
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≤ ALG

OPT

[this work]



From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

min
i

|Li|
|Wi|

≤
∑

i |Li|∑
i |Wi|

≤ ALG− |Z|
OPT− |Z|

≤ ALG

OPT

elements lost by
swap out

elements won by
swap in

elements staying
covered during
swaps

1. swap out Vi ∩ S
2. swap in (Vi ∪ N(Vi)) ∩ O
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Overview and Future Work
Theorem:There is a PTAS for any class of max coverage problems that
admits planar (f -separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

• covering points with halfspaces in R3

• covering points with pseudodisks in R2

• hitting pseudodisks (r-admissable regions) in R2 by points
• guarding 1.5D terrains
• maximum k-dominating set for intersection graphs of homethetic

copies of convex objects (such as arbitrary squares, translated and
scaled copies of convex objects)

• maximum k-dominating set on non-trivial minor-closed graph classes
• maximum k-vertex cover on f -separable on subgraph-closed

graphclasses
• . . .

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012
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• improve running time
• improved ratios for APX-hard cases?
• other applications (with hard cardinality constraint)?
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