Approximation Schemes for Geometric Coverage Problems

Minati De
Indian Institute of Technology Delhi, India

Joint work with Steven Chaplick, Alexander Ravsky, and Joachim Spoerhase

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Think of k-document search in information retrieval!
$k=3$

$$
U \hat{=} \text { users }
$$

$\mathcal{F} \hat{=}$ docs

Maximum Coverage

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, and a positive integer k, find a family $\mathcal{S} \subseteq F$ of k sets maximizing the number $|\bigcup \mathcal{S}|$ of covered elements.

Think of k-document search in information retrieval!
$k=3$

$$
U \hat{=} \text { users }
$$

$\mathcal{F} \hat{=}$ docs
NP-hard

Prior Work and Open Question

General Coverage

Prior Work and Open Question

General Coverage

- greedy gives a ($1-1 / e$)-approximation

Cornuéjols, Nemhauser, Wolsey 1980]

- NP-hard to approximate within $1-1 / e+\epsilon$ for any $\epsilon>0$
[Feige 1998]

Prior Work and Open Question

General Coverage

- greedy gives a ($1-1 / e$)-approximation [Cornuéjols, Nemhauser, Wolsey 1980]
- NP-hard to approximate within $1-1 / e+\epsilon$ for any $\epsilon>0$ [Feige 1998]

Geometric Coverage

- parameterized $(1-\epsilon)$-approximation in $f(k, \epsilon) \cdot \operatorname{poly}(n)$ time for set systems with bounded VC-dimension

Prior Work and Open Question

General Coverage

- greedy gives a ($1-1 / e$)-approximation [Cornuéjols, Nemhauser, Wolsey 1980]
- NP-hard to approximate within $1-1 / e+\epsilon$ for any $\epsilon>0$ [Feige 1998]

Geometric Coverage

- parameterized $(1-\epsilon)$-approximation in $f(k, \epsilon) \cdot \operatorname{poly}(n)$ time for set systems with bounded VC-dimension
- exponential dependence on k cannot be removed as some cases (such as halfspaces in \mathbb{R}^{4}) are APX-hard

Prior Work and Open Question

General Coverage

- greedy gives a ($1-1 / e$)-approximation [Cornuéjols, Nemhauser, Wolsey 1980]
- NP-hard to approximate within $1-1 / e+\epsilon$ for any $\epsilon>0$
[Feige 1998]

Geometric Coverage

- parameterized $(1-\epsilon)$-approximation in $f(k, \epsilon) \cdot \operatorname{poly}(n)$ time for set systems with bounded VC-dimension
- exponential dependence on k cannot be removed as some cases (such as halfspaces in \mathbb{R}^{4}) are APX-hard [Badanidiyuru, Kleinberg, Lee 2012]
Question: In which of the geometric cases that are not known to be APX-hard (e.g. halfspaces in \mathbb{R}^{3}, pseudodisks in \mathbb{R}^{2}, \ldots) can we obtain a (true) PTAS?

Set Cover

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

Set Cover

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

General Set Cover

- $\ln n$-approximation via greedy
- NP-hard to approximate within $(1-\epsilon) \ln n$
[Feige 1998, Dinur and Steurer 2014]

Set Cover

Given a ground set U, a set family $\mathcal{F} \subseteq 2^{U}$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

General Set Cover

- In n-approximation via greedy
- NP-hard to approximate within $(1-\epsilon) \ln n$
[Feige 1998, Dinur and Steurer 2014]

Geometric Set Cover

- many techniques and a large body of literature: ϵ-nets, quasi-uniform sampling and many more ...
- local search gives a PTAS for a multitude of problems: halfspaces in \mathbb{R}^{3}, pseudodisks in \mathbb{R}^{2}, terrain guarding,...

Geometric Set Cover and Local Search

[Mustafa \& Ray 2009]
Algorithm

- pick an integral parameter $b>0$

Geometric Set Cover and Local Search

Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution

Geometric Set Cover and Local Search

Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Geometric Set Cover and Local Search

 [Mustafa \& Ray 2009]
Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively

Geometric Set Cover and Local Search

 [Mustafa \& Ray 2009]
Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar

Geometric Set Cover and Local Search

 [Mustafa \& Ray 2009]
Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps

Geometric Set Cover and Local Search

Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
- use an averaging argument to show existence of a profitable swap if local \gg global

Geometric Set Cover and Local Search

Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar problem-specific part!
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
- use an averaging argument to show existence of a profitable swap if local \gg global

Geometric Set Cover and Local Search

 [Mustafa \& Ray 2009]
Algorithm

- pick an integral parameter $b>0$
- start with an arbitrary feasible solution
- repeatedly replace b sets with $<b$ sets as long as possible

Analysis

- construct an exchange graph whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
general machinery!
- use an averaging argument to show existence of a profitable swap if local \gg global

Machinery Applicable to Geometric Coverage?

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^{3}	PTAS via LS	PTAS via LS conjectured!
	$[$ Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012.

Machinery Applicable to Geometric Coverage?

Problem	Set Cover	Max Coverage		
halfspaces in \mathbb{R}^{3}	PTAS via LS	PTAS via LS conjectured!		
	$[$ Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012		
halfspaces in \mathbb{R}^{2}	in P via DP	P via DP	\quad	[Har-Peled, Lee 2008]
:---				
pseudodisks				

Machinery Applicable to Geometric Coverage?

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^{3}	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012
halfspaces in \mathbb{R}^{2}	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012
pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
hitting pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
1.5D terrain guarding	PTAS via LS	open
	[Krohn et al. 2014]	
.	.	.
.	.	.

Machinery Applicable to Geometric Coverage?

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^{3}	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012
halfspaces in \mathbb{R}^{2}	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012.
pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
hitting pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
1.5D terrain guarding	PTAS via LS	open
	[Krohn et al. 2014]	
	:	.
	:	.

planar exchange graph

Set Cover

Machinery Applicable to Geometric Coverage?

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^{3}	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012
halfspaces in \mathbb{R}^{2}	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012
pseudodisks	PTAS via LS [Pyrga, Ray 2008]	open
hitting pseudodisks	PTAS via LS [Pyrga, Ray 2008]	open
1.5D terrain guarding	PTAS via LS [Krohn et al. 2014]	open
:	:	:

planar exchange graph

Set Cover
 Max Coverage?

Exchange Graph

[Mustafa \& Ray 2009]

Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be feasible solutions. A graph with node set $\mathcal{F}_{1}, \mathcal{F}_{2}$ has the exchange property if for every $u \in U$ covered by both solutions there exist an edge (S_{1}, S_{2}) with $u \in S_{1} \cap S_{2}$ and $S_{i} \in \mathcal{F}_{i}$

Exchange Graph

Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be feasible solutions. A graph with node set $\mathcal{F}_{1}, \mathcal{F}_{2}$ has the exchange property if for every $u \in U$ covered by both solutions there exist an edge (S_{1}, S_{2}) with $u \in S_{1} \cap S_{2}$ and $S_{i} \in \mathcal{F}_{i}$

Exchange Graph

[Mustafa \& Ray 2009]

Let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be feasible solutions. A graph with node set $\mathcal{F}_{1}, \mathcal{F}_{2}$ has the exchange property if for every $u \in U$ covered by both solutions there exist an edge (S_{1}, S_{2}) with $u \in S_{1} \cap S_{2}$ and $S_{i} \in \mathcal{F}_{i}$

feasible swap

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):
For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$
[Mustafa \& Ray 2009]

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):

For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):
For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$

Subdivide planar exchange graph over optimal solution \mathcal{O} and locally optimal solution \mathcal{S}
[Mustafa \& Ray 2009]

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):
For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$

Subdivide planar exchange graph over optimal solution \mathcal{O} and locally optimal solution \mathcal{S}
Each $\bar{V}_{i}=V_{i} \cup N\left(V_{i}\right)$ defines feasible swap $V_{i} \cap \mathcal{S} \mapsto \bar{V}_{i} \cap \mathcal{O}$ for \mathcal{S}

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):

For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$

Subdivide planar exchange graph over optimal solution \mathcal{O} and locally optimal solution \mathcal{S}
Each $\bar{V}_{i}=V_{i} \cup N\left(V_{i}\right)$ defines feasible swap $V_{i} \cap \mathcal{S} \mapsto \bar{V}_{i} \cap \mathcal{O}$ for \mathcal{S}

$$
|\mathcal{S}| \leq|X|+\sum_{i}\left|V_{i} \cap \mathcal{S}\right| \leq|X|+\sum_{i}\left|\bar{V}_{i} \cap \mathcal{O}\right| \leq \frac{2}{\sqrt{t}}(|\mathcal{S}|+|\mathrm{OPT}|)+|\mathrm{OPT}|
$$

Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):

For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=O(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t})$

Subdivide planar exchange graph over optimal solution \mathcal{O} and locally optimal solution \mathcal{S}
Each $\bar{V}_{i}=V_{i} \cup N\left(V_{i}\right)$ defines feasible swap $V_{i} \cap \mathcal{S} \mapsto \bar{V}_{i} \cap \mathcal{O}$ for \mathcal{S}

$$
\begin{aligned}
& |\mathcal{S}| \leq|X|+\sum_{i}\left|V_{i} \cap \mathcal{S}\right| \leq|X|+\sum_{i}\left|\bar{V}_{i} \cap \mathcal{O}\right| \leq \frac{2}{\sqrt{t}}(|\mathcal{S}|+|\mathrm{OPT}|)+|\mathrm{OPT}| \\
& \rightsquigarrow|\mathcal{S}| \leq \frac{1+\frac{2}{\sqrt{t}}}{1-\frac{2}{\sqrt{t}}}|\mathrm{OPT}|
\end{aligned}
$$

Algorithm/Hurdles for Max Coverage

 local search: swaps do not change cardinality of the solution but improve number of covered elements
Algorithm/Hurdles for Max Coverage

 local search: swaps do not change cardinality of the solution but improve number of covered elements
Hurdles

1. does exchange graph still reflect the objective function?

- maximization \Leftrightarrow covering is no hard constraint
- exchange graph takes into account only elements covered by both solution but no individual elements

Algorithm/Hurdles for Max Coverage

 local search: swaps do not change cardinality of the solution but improve number of covered elements
Hurdles

1. does exchange graph still reflect the objective function?

- maximization \Leftrightarrow covering is no hard constraint
- exchange graph takes into account only elements covered by both solution but no individual elements

2. color-imbalanced subdivisions conflict with hard cardinality constraint

Our Results

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Our Results

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

- covering points with halfspaces in \mathbb{R}^{3}
- covering points with pseudodisks in \mathbb{R}^{2}
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^{2} by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses

Our Results

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for
confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012

- covering points with halfspaces in \mathbb{R}^{3}
- covering points with pseudodisks in \mathbb{R}^{2}
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^{2} by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses

High-Level Overview

[this work]

1. Get a nearly color-balanced subdivision

Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$

High-Level Overview

[this work]

1. Get a nearly color-balanced subdivision

Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$

High-Level Overview

[this work]

1. Get a nearly color-balanced subdivision

Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left\|V_{i} \cap R|-| V_{i} \cap B\right\|=O(\sqrt{t}), \forall i$

2. Obtain a significantly profitable, almost balanced swap

High-Level Overview

[this work]

1. Get a nearly color-balanced subdivision

Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left\|V_{i} \cap R|-| V_{i} \cap B\right\|=O(\sqrt{t}), \forall i$

2. Obtain a significantly profitable, almost balanced swap
3. Use submodularity to get a perfectly balanced and (still) profitable swap

Obtaining Approximate Color-Balance

[this work]

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$, $\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$

Obtaining Approximate Color-Balance

[this work]

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Obtaining Approximate Color-Balance

[this work]

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$, $\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$, $\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision

Lemma: For every $t>0$, planar $G, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right)$,
$\ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O(\sqrt{t}), \forall i$
- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance
Theorem: For every $t>0$, planar two-colored G with $V(G)=R \cup B$ and $|B|=|R|, V(G)$ partitions as $\left(V_{1}, \ldots, V_{\ell}, X\right), \ell=\Theta(n / t)$ such that

- $\left|V_{i} \cup N\left(V_{i}\right)\right|=\Theta(t), \forall i$.
- X separates V_{i} from $V_{j},(\forall i \neq j)$.
- $\left|N\left(V_{i}\right)\right|=O\left(t^{3 / 4}\right), \forall i$
- $\left|\left|V_{i} \cap R\right|-\right| V_{i} \cap B \|=O(\sqrt{t}), \forall i$
- compute uniform subdivision with $t^{\prime}=\sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n / t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O\left(t^{3 / 4}\right)$, imbalance $O(\sqrt{t})$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
\rightsquigarrow ex. i with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
$\rightsquigarrow \mathrm{ex} . i$ with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$
Step 3: Get perfectly balanced, profitable swap

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
\rightsquigarrow ex. i with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$
Step 3: Get perfectly balanced, profitable swap

$$
S_{j}=\arg \max _{S \in \mathcal{O}_{i}}\left|S \backslash\left(Z_{i} \cup \bigcup_{\ell=1}^{j-1} S_{\ell}\right)\right|
$$

S_{1} maximizes $\left|S \backslash Z_{i}\right|$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
\rightsquigarrow ex. i with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$
Step 3: Get perfectly balanced, profitable swap

$$
\begin{equation*}
S_{j}=\arg \max _{S \in \overline{\mathcal{O}}_{i}}\left|S \backslash\left(Z_{i} \cup \bigcup_{\ell=1}^{j-1} S_{\ell}\right)\right| \quad\left|\left(\bigcup_{\ell=1}^{j} S_{\ell}\right) \backslash Z_{i}\right| \geq \frac{j \cdot\left|W_{i}\right|}{\left|\overline{\mathcal{O}}_{i}\right|} . \tag{1}
\end{equation*}
$$

S_{1} maximizes $\left|S \backslash Z_{i}\right|$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
\rightsquigarrow ex. i with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$
Step 3: Get perfectly balanced, profitable swap

$$
\begin{aligned}
\left|L_{i}\right| & <(1-c / \sqrt{b}) \cdot\left|W_{i}\right| \\
& \leq(1-c / \sqrt{b}) \frac{\left|\overline{\mathcal{O}}_{i}\right|}{\left|\mathcal{A}_{i}\right|}\left|\left(\bigcup_{\ell=1}^{\left|\mathcal{A}_{i}\right|} S_{\ell}\right) \backslash Z_{i}\right| \\
& \leq\left|\left(\bigcup_{\ell=1}^{\left|\mathcal{A}_{i}\right|} S_{\ell}\right) \backslash Z_{i}\right| .
\end{aligned}
$$

From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

$$
\min _{i} \frac{\left|L_{i}\right|}{\left|W_{i}\right|} \leq \frac{\sum_{i}\left|L_{i}\right|}{\sum_{i}\left|W_{i}\right|} \leq \frac{\mathrm{ALG}-|Z|}{\mathrm{OPT}-|Z|} \leq \frac{\mathrm{ALG}}{\mathrm{OPT}}
$$

assume ALG $<(1-c / \sqrt{b})$ OPT where $b, t=b^{2}$, and c are large enough constants
\rightsquigarrow ex. i with $\left|L_{i}\right|<(1-c / \sqrt{b})\left|W_{i}\right|$
Step 3: Get perfectly balanced, profitable swap

$$
\begin{aligned}
\left|L_{i}\right| & <(1-c / \sqrt{b}) \cdot\left|W_{i}\right| \\
& \leq(1-c / \sqrt{b}) \frac{\left|\overline{\mathcal{O}}_{i}\right|}{\left|\mathcal{A}_{i}\right|}\left|\left(\bigcup_{\ell=1}^{\left|\mathcal{A}_{i}\right|} S_{\ell}\right) \backslash Z_{i}\right| \\
& \leq\left|\left(\bigcup_{\ell=1}^{\left|\mathcal{A}_{i}\right|} S_{\ell}\right) \backslash Z_{i}\right| .
\end{aligned}
$$

Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.
Corollary: Max coverage admits a PTAS for

- covering points with halfspaces in \mathbb{R}^{3}
- covering points with pseudodisks in \mathbb{R}^{2}
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^{2} by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses
- ...

Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.
Corollary: Max coverage admits a PTAS for
confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012

- covering points with halfspaces in \mathbb{R}^{3}
- covering points with pseudodisks in \mathbb{R}^{2}
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^{2} by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses
- improve running time
- improved ratios for APX-hard cases?
- other applications (with hard cardinality constraint)?

Thank you!

