Approximation Schemes for Geometric Coverage Problems

Minati De

Indian Institute of Technology Delhi, India

Joint work with Steven Chaplick, Alexander Ravsky, and Joachim Spoerhase

General Coverage

General Coverage

- greedy gives a (1 1/e)-approximation
- NP-hard to approximate within $1 1/e + \epsilon$ for any $\epsilon > 0$
 - [Feige 1998]

General Coverage

- greedy gives a (1 1/e)-approximation
- NP-hard to approximate within $1 1/e + \epsilon$ for any $\epsilon > 0$

Geometric Coverage

• parameterized $(1 - \epsilon)$ -approximation in $f(k, \epsilon) \cdot poly(n)$ time for set systems with bounded VC-dimension

[Badanidiyuru, Kleinberg, Lee 2012]

[Feige 1998]

General Coverage

- greedy gives a (1 1/e)-approximation
- NP-hard to approximate within $1 1/e + \epsilon$ for any $\epsilon > 0$ [Feige 1998]

Geometric Coverage

- parameterized (1ϵ) -approximation in $f(k, \epsilon) \cdot poly(n)$ time for set systems with bounded VC-dimension
- exponential dependence on k cannot be removed as some cases (such as halfspaces in \mathbb{R}^4) are APX-hard [Badanidiyuru, Kleinberg, Lee 2012]

General Coverage

- greedy gives a (1 1/e)-approximation
- NP-hard to approximate within $1 1/e + \epsilon$ for any $\epsilon > 0$ [Feige 1998]

Geometric Coverage

- parameterized (1ϵ) -approximation in $f(k, \epsilon) \cdot poly(n)$ time for set systems with bounded VC-dimension
- exponential dependence on k cannot be removed as some cases (such as halfspaces in \mathbb{R}^4) are APX-hard [Badanidiyuru, Kleinberg, Lee 2012]

Question: In which of the geometric cases that are not known to be APX-hard (e.g. halfspaces in \mathbb{R}^3 , pseudodisks in \mathbb{R}^2 , ...) can we obtain a (true) PTAS?

Given a ground set U, a set family $\mathcal{F} \subseteq 2^U$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

Set Cover

Given a ground set U, a set family $\mathcal{F} \subseteq 2^U$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

General Set Cover

• In *n*-approximation via greedy

[Chvátal 1979]

• NP-hard to approximate within $(1 - \epsilon) \ln n$ [Feige 1998, Dinur and Steurer 2014]

Set Cover

Given a ground set U, a set family $\mathcal{F} \subseteq 2^U$, find a smallest family $\mathcal{S} \subseteq \mathcal{F}$ covering the whole ground set U

General Set Cover

- In *n*-approximation via greedy [Chvátal 1979]
- NP-hard to approximate within $(1 \epsilon) \ln n$ [Feige 1998, Dinur and Steurer 2014]

Geometric Set Cover

- many techniques and a large body of literature: ε-nets, quasi-uniform sampling and many more ...
- local search gives a PTAS for a multitude of problems: halfspaces in \mathbb{R}^3 , pseudodisks in \mathbb{R}^2 , terrain guarding,...

[Mustafa & Ray 2009]

Algorithm

• pick an integral parameter b > 0

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

Analysis

• construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

- construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

- construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

- construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
- use an averaging argument to show existence of a profitable swap if local \gg global

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

- construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar problem-specific part!
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
- use an averaging argument to show existence of a profitable swap if local \gg global

Algorithm

- pick an integral parameter b > 0
- start with an arbitrary feasible solution
- repeatedly replace b sets with < b sets as long as possible

- construct an **exchange graph** whose vertices are the sets in a global and a local optimum solution, respectively
- Show that this graph is planar
- apply Frederickson's planar subdivision where pieces correspond to candidate swaps
 general machinery!
- use an averaging argument to show existence of a profitable swap if local \gg global

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^3	PTAS via LS [Mustafa, Ray 2009]	PTAS via LS conjectured! [Badanidiyuru, Kleinberg, Lee 2012]

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^3	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012]
halfspaces in \mathbb{R}^2	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012]
pseudodisks	PTAS via LS	open

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^3	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012]
halfspaces in \mathbb{R}^2	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012]
pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
hitting pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
1.5D terrain guarding	PTAS via LS	open
	[Krohn et al. 2014]	
:	:	:
•	•	

.

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^3	PTAS via LS	PTAS via LS conjectured!
2	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012]
halfspaces in \mathbb{R}^2	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012]
pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
hitting pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
1.5D terrain guarding	PTAS via LS	open
	[Krohn et al. 2014]	

planar exchange graph

Set Cover

Problem	Set Cover	Max Coverage
halfspaces in \mathbb{R}^3	PTAS via LS	PTAS via LS conjectured!
	[Mustafa, Ray 2009]	[Badanidiyuru, Kleinberg, Lee 2012]
halfspaces in \mathbb{R}^2	in P via DP	P via DP
	[Har-Peled, Lee 2008]	[Har-Peled, Lee 2008]
		[Badanidiyuru, Kleinberg, Lee 2012]
pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
hitting pseudodisks	PTAS via LS	open
	[Pyrga, Ray 2008]	
1.5D terrain guarding	PTAS via LS	open
	[Krohn et al. 2014]	

planar exchange graph

Set Cover Max Coverage?

Exchange Graph

[Mustafa & Ray 2009]

Let $\mathcal{F}_1, \mathcal{F}_2$ be feasible solutions. A graph with node set $\mathcal{F}_1, \mathcal{F}_2$ has the **exchange property** if for every $u \in U$ covered by both solutions there exist an edge (S_1, S_2) with $u \in S_1 \cap S_2$ and $S_i \in \mathcal{F}_i$

Exchange Graph

[Mustafa & Ray 2009] Let $\mathcal{F}_1, \mathcal{F}_2$ be feasible solutions. A graph with node set $\mathcal{F}_1, \mathcal{F}_2$ has the **exchange property** if for every $u \in U$ covered by both solutions there exist an edge (S_1, S_2) with $u \in S_1 \cap S_2$ and $S_i \in \mathcal{F}_i$

Exchange Graph

Let $\mathcal{F}_1, \mathcal{F}_2$ be feasible solutions. A graph with node set $\mathcal{F}_1, \mathcal{F}_2$ has the **exchange property** if for every $u \in U$ covered by both solutions there exist an edge (S_1, S_2) with $u \in S_1 \cap S_2$ and $S_i \in \mathcal{F}_i$

[Mustafa & Ray 2009]

Subdividing **Planar** Exchange Graphs

Theorem (Frederickson 1987): For every t > 0, planar G, V(G)

partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = O(t)$, $\forall i$.
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t})$

Subdividing **Planar** Exchange Graphs

Theorem (Frederickson 1987):

For every t > 0, planar G, V(G)partitions as $(V_1, \ldots, V_{\ell}, X)$, $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = O(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.

•
$$|N(V_i)| = O(\sqrt{t})$$

Subdivide planar exchange graph over optimal solution ${\cal O}$ and locally optimal solution ${\cal S}$

Subdividing **Planar** Exchange Graphs

Theorem (Frederickson 1987):

For every t > 0, planar G, V(G)partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = O(t)$, $\forall i$.
- X separates V_i from V_j , $(\forall i \neq j)$.

•
$$|N(V_i)| = O(\sqrt{t})$$

Subdivide planar exchange graph over optimal solution ${\cal O}$ and locally optimal solution ${\cal S}$

Each $\overline{V}_i = V_i \cup N(V_i)$ defines **feasible swap** $V_i \cap S \mapsto \overline{V}_i \cap O$ for S

Subdividing **Planar** Exchange Graphs

Theorem (Frederickson 1987):

For every t > 0, planar G, V(G)partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = O(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t})$

Subdivide planar exchange graph over optimal solution ${\cal O}$ and locally optimal solution ${\cal S}$

Each $\overline{V}_i = V_i \cup N(V_i)$ defines **feasible swap** $V_i \cap S \mapsto \overline{V}_i \cap O$ for S

$$|\mathcal{S}| \le |X| + \sum_{i} |V_i \cap \mathcal{S}| \le |X| + \sum_{i} |\bar{V}_i \cap \mathcal{O}| \le \frac{2}{\sqrt{t}} (|\mathcal{S}| + |\mathsf{OPT}|) + |\mathsf{OPT}|$$

Subdividing **Planar** Exchange Graphs

Theorem (Frederickson 1987):

For every t > 0, planar G, V(G)partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = O(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.

•
$$|N(V_i)| = O(\sqrt{t})$$

Subdivide planar exchange graph over optimal solution ${\cal O}$ and locally optimal solution ${\cal S}$

Each $\overline{V}_i = V_i \cup N(V_i)$ defines **feasible swap** $V_i \cap S \mapsto \overline{V}_i \cap O$ for S

$$\begin{split} |\mathcal{S}| &\leq |X| + \sum_{i} |V_i \cap \mathcal{S}| \leq |X| + \sum_{i} |\bar{V}_i \cap \mathcal{O}| \leq \frac{2}{\sqrt{t}} (|\mathcal{S}| + |\mathsf{OPT}|) + |\mathsf{OPT}| \\ & \rightsquigarrow |\mathcal{S}| \leq \frac{1 + \frac{2}{\sqrt{t}}}{1 - \frac{2}{\sqrt{t}}} |\mathsf{OPT}| \end{split}$$

Algorithm/Hurdles for Max Coverage

[this work] local search: swaps **do not change cardinality** of the solution but **improve number of covered elements**

Algorithm/Hurdles for Max Coverage

[this work] local search: swaps **do not change cardinality** of the solution but **improve number of covered elements**

Hurdles

1. does exchange graph still reflect the **objective function**?

- maximization ⇔ covering is no hard constraint
- exchange graph takes into account only elements covered by both solution but no individual elements

Algorithm/Hurdles for Max Coverage

[this work] local search: swaps **do not change cardinality** of the solution but **improve number of covered elements**

Hurdles

1. does exchange graph still reflect the **objective function**?

- maximization ⇔ covering is no hard constraint
- exchange graph takes into account only elements covered by both solution but no individual elements

2. color-imbalanced subdivisions conflict with **hard cardinality constraint**

Our Results

Theorem: There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Our Results

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

- covering points with halfspaces in \mathbb{R}^3
- $\bullet\,$ covering points with pseudodisks in \mathbb{R}^2
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^2 by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses
- . .

Our Results

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

- confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012
- covering points with halfspaces in \mathbb{R}^3
- covering points with pseudodisks in \mathbb{R}^2
- hitting pseudodisks (r-admissable regions) in \mathbb{R}^2 by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses
- . .

[this work]

1. Get a nearly color-balanced subdivision

- $|V_i \cup N(V_i)| = \Theta(t), \ \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$
- $||V_i \cap R| |V_i \cap B|| = O(\sqrt{t}), \forall i$

[this work]

1. Get a nearly color-balanced subdivision

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$
- $||V_i \cap R| |V_i \cap B|| = O(\sqrt{t}), \forall i$

[this work]

1. Get a nearly color-balanced subdivision

Theorem: For every t > 0, planar two-colored G with $V(G) = \mathbb{R} \cup B$ and |B| = |R|, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$
- $||V_i \cap R| |V_i \cap B|| = O(\sqrt{t}), \forall i$

2. Obtain a significantly profitable, almost balanced swap

[this work]

1. Get a **nearly color-balanced subdivision**

Theorem: For every t > 0, planar two-colored G with $V(G) = \mathbb{R} \cup B$ and |B| = |R|, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$
- $||V_i \cap R| |V_i \cap B|| = O(\sqrt{t}), \forall i$

2. Obtain a significantly profitable, almost balanced swap

3. Use **submodularity** to get a **perfectly balanced** and (still) **profitable** swap

[this work]

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

[this work]

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

[this work]

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as $(V_1, \ldots, V_{\ell}, X)$, $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$
- $||V_i \cap R| |V_i \cap B|| = O(\sqrt{t}), \forall i$

[this work]

В

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: **Uniform** subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: **Uniform** subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: **Uniform** subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: **Uniform** subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: **Uniform** subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

В

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

[this work]

Step 1.1: Uniform subdivision

Lemma: For every t > 0, planar G, V(G) partitions as (V_1, \ldots, V_ℓ, X) , $\ell = \Theta(n/t)$ such that • start with (non-uniform) Frederickson

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(\sqrt{t}), \forall i$

- start with (non-uniform) Frederickson subdivision
- group small (and big) pieces guaranteeing the lower bound while preserving an upper bound on their boundary
- bin packing type of argument

Step 1.2: Approximate color balance

- $|V_i \cup N(V_i)| = \Theta(t), \forall i.$
- X separates V_i from V_j , $(\forall i \neq j)$.
- $|N(V_i)| = O(t^{3/4}), \forall i$

•
$$||V_i \cap R| - |V_i \cap B|| = O(\sqrt{t}), \forall i$$

- compute **uniform** subdivision with $t' = \sqrt{t}$
- greedily create a permutation π of the pieces s.t. every prefix has imbalance at most $\pm c \cdot \sqrt{t}$
- break π into $\Theta(n/t)$ equal-sized intervals
- yields size $\Theta(t)$, boundary $O(t^{3/4})$, imbalance $O(\sqrt{t})$

From Nearly Balanced to Balanced Swaps [this work] Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

From Nearly Balanced to Balanced Swaps [this work] Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

 \rightsquigarrow ex. *i* with $|L_i| < (1 - c/\sqrt{b})|W_i|$

Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

$$\rightsquigarrow$$
 ex. i with $|L_i| < (1 - c/\sqrt{b})|W_i|$

Step 3: Get **perfectly balanced**, profitable swap

Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

$$\rightsquigarrow$$
 ex. i with $|L_i| < (1 - c/\sqrt{b})|W_i|$

Step 3: Get perfectly balanced, profitable swap

$$S_j = \arg \max_{S \in \bar{\mathcal{O}}_i} \left| S \setminus \left(Z_i \cup \bigcup_{\ell=1}^{j-1} S_\ell \right) \right|$$

 S_1 maximizes $|S \setminus Z_i|$

Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

$$\rightsquigarrow$$
 ex. i with $|L_i| < (1-c/\sqrt{b})|W_i|$

Step 3: Get perfectly balanced, profitable swap

$$S_{j} = \arg \max_{S \in \bar{\mathcal{O}}_{i}} \left| S \setminus \left(Z_{i} \cup \bigcup_{\ell=1}^{j-1} S_{\ell} \right) \right| \qquad \left| \left(\bigcup_{\ell=1}^{j} S_{\ell} \right) \setminus Z_{i} \right| \ge \frac{j \cdot |W_{i}|}{|\bar{\mathcal{O}}_{i}|} .$$
(1)

 S_1 maximizes $|S \setminus Z_i|$

Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

 \rightsquigarrow ex. i with $|L_i| < (1 - c/\sqrt{b})|W_i|$

Step 3: Get perfectly balanced, profitable swap

$$\begin{aligned} |L_i| &< \left(1 - c/\sqrt{b}\right) \cdot |W_i| \\ &\leq \left(1 - c/\sqrt{b}\right) \frac{|\bar{\mathcal{O}}_i|}{|\mathcal{A}_i|} \left| \left(\bigcup_{\ell=1}^{|\mathcal{A}_i|} S_\ell\right) \setminus Z_i \right| \\ &\leq \left| \left(\bigcup_{\ell=1}^{|\mathcal{A}_i|} S_\ell\right) \setminus Z_i \right| . \end{aligned}$$

Step 2: Obtain a significantly profitable, almost balanced swap

$$\min_{i} \frac{|L_i|}{|W_i|} \le \frac{\sum_{i} |L_i|}{\sum_{i} |W_i|} \le \frac{\mathsf{ALG} - |Z|}{\mathsf{OPT} - |Z|} \le \frac{\mathsf{ALG}}{\mathsf{OPT}}$$

assume ALG < $(1 - c/\sqrt{b})$ OPT where b, $t = b^2$, and c are large enough constants

$$\rightsquigarrow$$
 ex. i with $|L_i| < (1 - c/\sqrt{b})|W_i|$

 $\sim \rightarrow$

Step 3: Get perfectly balanced, profitable swap

$$\begin{aligned} |L_i| &< \left(1 - c/\sqrt{b}\right) \cdot |W_i| \\ &\leq \left(1 - c/\sqrt{b}\right) \frac{|\bar{\mathcal{O}}_i|}{|\mathcal{A}_i|} \left| \begin{pmatrix} |\mathcal{A}_i| \\ \bigcup_{\ell=1} S_\ell \end{pmatrix} \setminus Z_i \right| \\ &\leq \left| \begin{pmatrix} |\mathcal{A}_i| \\ \bigcup_{\ell=1} S_\ell \end{pmatrix} \setminus Z_i \right| . \end{aligned}$$

balanced and profitable swap

Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012

- covering points with halfspaces in \mathbb{R}^3
- \bullet covering points with pseudodisks in \mathbb{R}^2
- hitting pseudodisks (*r*-admissable regions) in \mathbb{R}^2 by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses

• . . .

Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012

- covering points with halfspaces in \mathbb{R}^3
- \bullet covering points with pseudodisks in \mathbb{R}^2
- hitting pseudodisks (*r*-admissable regions) in \mathbb{R}^2 by points
- guarding 1.5D terrains
- maximum k-dominating set for intersection graphs of homethetic copies of convex objects (such as arbitrary squares, translated and scaled copies of convex objects)
- maximum k-dominating set on non-trivial minor-closed graph classes
- maximum k-vertex cover on f-separable on subgraph-closed graphclasses
- . . .
- improve running time
- improved ratios for APX-hard cases?
- other applications (with hard cardinality constraint)?

Thank you!