# The Maximum Distance-*d* Independent Set Problem on Unit Disk Graphs

### Gautam K. Das

Department of Mathematics Indian Institute of Technology Guwahati E-mail: gkd@iitg.ac.in

Co-auth.: Sangram K. Jena, Ramesh K. Jallu, Subash C. Nandy NISER. Bhubaneswar

# **Organization of Talk**





- **3** A 4 factor-Approximation Algorithm
  - Approximation scheme for the Problem

## **Preliminaries**

- Unit Disk Graph
- Independent Set
- Oistance-d Independent Set

3/47

# Unit Disk Graph (UDG)



#### Figure: A collection of unit disks

# Unit Disk Graph (UDG)



#### Figure: The corresponding unit disk graph

# Unit Disk Graph (UDG)



### Figure: The final graph without disks

## Independent set



#### Figure: General graph

## Independent set



#### Figure: Example of independent set in general graph

## Independent set



#### Figure: Example of a different independent set

## Maximum independent set



#### Figure: Example of a maximum independent set

## Maximum independent set



#### Figure: Example of a different maximum independent set

## **Distance**-*d* **Independent Set**



**Figure:** Distance-*d* independent set for d = 3

12/47

## **Distance**-*d* **Independent Set**



**Figure:** Distance-*d* independent set for d = 3

12/47

## Maximum Distance-*d* Independent Set



**Figure:** Maximum distance-*d* independent set for d = 3

## Maximum Distance-*d* Independent Set



**Figure:** Maximum distance-*d* independent set for d = 3

#### The GMDdIS Problem on Unit Disk Graphs

**Given**: A unit disk graph G = (V, E) corresponding to a point set  $P = \{p_1, p_2, \dots, p_n\}$  in the plane. **Objective**: A maximum cardinality subset  $I \subseteq V$ , such that for every pair of vertices  $p_i, p_j \in I$ , the length (number of edges) of the shortest path between  $p_i$  and  $p_j$  is at least d.

# **Related Work**

Independent set

- NP-hard, [Clark et al., 1990].
- 5-factor and 3-factor approximation algorithms, [Marathe et al., 1995].
- **③** PTAS in time  $n^{O(k^2)}$ , [Hunt et al., 1998].
- First PTAS for MWIS in  $n^{O(k^2)}$  time, [Erlebach et al., 2005].
- A 2-f.a.a and a PTAS in  $O(n^3)$  and  $n^{O(k \log k)}$  time resp., [Das et al., 2015].
- A 2-f.a.a and a PTAS in O(n<sup>2</sup> log n) and n<sup>O(k)</sup> time resp.,
  [Jallu and Das, 2016].

## The GMDdIS Problem on Unit Disk Graphs

- 1. we study the MDdIS problem on unit disk graphs and we call it *the* geometric maximum distance-d independent set (GMDdIS) problem.
- 2. We show that the decision version of the GMD*d*IS problem (for  $d \ge 3$ ) is NP-complete on unit disk graphs.
- 3. We propose a 4-factor approximation algorithm for the problem.
- 4. We also proposed a PTAS for this problem.

# Our work

- **Q** Geometric Distance-*d* Independent Set (GD*d*IS) Problem
  - **Instance** : An unweighted unit disk graph G = (V, E) defined on a point set P and a positive integer  $k \le |V|$ .
  - **Question :** Does there exist a distance-*d* independent set of size at least *k* in *G*?
- DISTANCE-d INDEPENDENT SET ON PLANAR BIPARTITE GRAPHS[Eto et al. (2014)]
  - **Instance** : An unweighted planar bipartite graph G = (V, E) with girth at least d and maximum vertex degree 3, and a positive integer  $k \le |V|$ .
  - **Question :** Does there exist a distance-*d* independent set of size at least *k* in *G*?

## Planar embedding of planar graphs

### Key lemma [Valiant, 1981]

Planar graph G = (V, E) with maximum degree 4 can be embedded in the plane using  $O(|V|^2)$  area in such a way that its vertices are at integer co-ordinates and its edges are drawn so that they are made up of line segments of the form x = i or y = j, for integers i and j.



## Observation

#### Corollary

Let G = (V, E) be a planar graph with maximum degree 3. G can be embedded in the plane such that its vertices are at (4i, 4j) and its edges are drawn as a sequences of consecutive line segments drawn on the lines x = 4i or y = 4j, for some integers i and j.





Figure: (a) A planar bipartite graph G of maximum degree 3, (b) its embedding G' on a grid of cell size  $3 \times 3$ . Gautam K. Das (IIT Guwahati) The Maximum Distance-d Independent Set February 8, 2019 20/47



#### Claim

*G* has a D*d*IS of cardinality at least *k* if and only if *G*" has a D*d*IS of cardinality at least  $k + \ell$ .

Lemma

Any DdIS of G" contains at most  $\ell$  points from segments.



#### The obtained UDG G''.

## Approximation algorithm for DdIS problem



**Figure:** The region divided with horigental strips of width *d* 

## Approximation algorithm for DdIS problem



**Figure:** Each strip divided with vertical strips of width *d* 

# Approximation algorithm for DdIS problem

#### Lemma

If OPT is an optimum solution for the given GMDdIS problem, then  $\max(|S_{even}|, |S_{odd}|) \ge \frac{1}{4}|OPT|$ .

- Let  $Q \subseteq P$  be the set of points inside a  $d \times d$  square  $\chi$ .
- $G_{\chi}$  be the UDG defined on  ${\cal Q}$
- Let  $C_1, C_2, \ldots, C_l$  be the connected components of  $G_{\chi}$ .
- Without loss of generality we assume that any two components in G<sub>χ</sub> are at least d distance apart<sup>1</sup> in G.

<sup>&</sup>lt;sup>1</sup> if there are two components having distance less than d in G, then we can view them as a single component

#### Lemma

The worst case number of components in  $G_{\chi}$  is  $O(d^2)$ .



**Figure:** Maximum number of components in a  $d \times d$  square

#### Lemma

Let C be any component of  $G_{\chi}$ . The number of mutually distance-d independent points in C is bounded by O(d).



**Figure:** Maximum number of mutually distance-*d* independent set in a  $d \times d$  square



**Figure:** Maximum number of mutually distance-*d* independent set in a  $d \times d$  square



**Figure:** Maximum number of mutually distance-*d* independent set in a  $d \times d$  square

# Computing an optimum solution in a $d \times d$ square

#### Lemma

An optimal DdIS in  $\chi$  can be computed in  $d^2 n^{O(d)}$  time.

# Computing an optimum solution in a $d \times d$ square

#### Theorem

Given a set P of n points in the plane, we can always compute a DdIS of size at least  $\frac{1}{4}|OPT|$  in  $d^2n^{O(d)}$  time, where |OPT| is the cardinality of a GMDdIS.

#### We use two level shifting strategy



**Figure:** On  $i^{th}$  iteration first vertical strip is of width *i*, all the even strip is of width *d* and all the odd strips is of width *k*, where k >> d.

Gautam K. Das (IIT Guwahati)

The Maximum Distance-d Independent Set



Figure: Each vertical odd strip use the same shifting strategy



**Figure:**  $Q \subseteq P$  inside a square  $\chi$  of size  $k \times k$ .



**Figure:** partition  $\chi$  into four sub-squares, each of size  $\frac{k}{2} \times \frac{k}{2}$ , using a horizontal line  $\ell_h$  and a vertical lines  $\ell_v$ .

Gautam K. Das (IIT Guwahati) The Maximum Distance-d Independent Set



**Figure:**  $Q_1 \subseteq Q$ , the subset of points in  $\chi$  which are at most d distance away from  $\ell_h$  and/or  $\ell_v$ 

Gautam K. Das (IIT Guwahati) The Maximum Distance-d Independent Set

Let  $Q_2$  be a maximum cardinality subset of  $Q_1$  such that all the points in  $Q_2$  are pair wise distance-*d* independent in *p*.

Lemma

 $|\mathcal{Q}_2| \leq O(k).$ 



#### Lemma

The solution produced for the cell  $\chi$  (of size  $k \times k$ ) in the aforesaid process is optimum, and the time complexity of the proposed algorithm is  $k^2 m^{O(k)}$ , where m = |Q|.

 $T(m,k) = 4 \times T(m, \frac{k}{2}) \times m^{O(k)} + O(k^2)$ , which is  $k^2 \times m^{O(k)}$  in the worst case.

#### Theorem

Given a set P of n points (centers of the unit disks) in the plane and an integer k > 1, the proposed scheme produces a DdIS of size at least  $\frac{1}{(1+\frac{1}{k})^2}|OPT|$  in  $k^2n^{O(k)}$  time, where |OPT| is the cardinality of a GMDdIS.

## **References** I

Clark, B. N., Colbourn, C. J., and Johnson, D. S. (1990).
 Unit disk graphs.
 Discrete mathematics, 86(1):165–177.

Das, G. K., De, M., Kolay, S., Nandy, S. C., and Sur-Kolay, S. (2015). Approximation algorithms for maximum independent set of a unit disk graph.

Information Processing Letters, 115(3):439–446.

Erlebach, T., Jansen, K., and Seidel, E. (2005).
 Polynomial-time approximation schemes for geometric intersection graphs.

SIAM Journal on Computing, 34(6):1302–1323.

## **References II**

 Hunt, H. B., Marathe, M. V., Radhakrishnan, V., Ravi, S. S., Rosenkrantz, D. J., and Stearns, R. E. (1998).
 Nc-approximation schemes for np-and pspace-hard problems for geometric graphs.

Journal of Algorithms, 26(2):238–274.

Jallu, R. K. and Das, G. K. (2016). Improved algorithm for maximum independent set on unit disk graph. In Algorithms and Discrete Applied Mathematics: Second International Conference, CALDAM 2016, Trivendrum, India, February 18-20, 2016. Proceedings. Springer.

 Marathe, M. V., Breu, H., Hunt, H. B., Ravi, S. S., and Rosenkrantz, D. J. (1995).
 Simple heuristics for unit disk graphs. *Networks*, 25(2):59–68.

## **References III**



### Valiant, L. G. (1981).

Universality considerations in VLSI circuits.

*IEEE Transactions on Computers*, 100(2):135–140.

# **THANK YOU**