The Maximum Distance- d Independent Set Problem on Unit Disk Graphs

Gautam K. Das

Department of Mathematics Indian Institute of Technology Guwahati
E-mail: gkd@iitg.ac.in

Co-auth.: Sangram K. Jena, Ramesh K. Jallu, Subash C. Nandy
NISER, Bhubaneswar

Organization of Talk

(1) Preliminaries
(2) Problem Description
(3) A 4 factor-Approximation Algorithm
(4) Approximation scheme for the Problem

Preliminaries

(1) Unit Disk Graph
(2) Independent Set
(3) Distance-d Independent Set

Unit Disk Graph (UDG)

Figure: A collection of unit disks

Unit Disk Graph (UDG)

Figure: The corresponding unit disk graph

Unit Disk Graph (UDG)

Figure: The final graph without disks

Independent set

Figure: General graph

Independent set

Figure: Example of independent set in general graph

Independent set

Figure: Example of a different independent set

Maximum independent set

Figure: Example of a maximum independent set

Maximum independent set

Figure: Example of a different maximum independent set

Distance- d Independent Set

Figure: Distance- d independent set for $d=3$

Distance- d Independent Set

Figure: Distance- d independent set for $d=3$

Maximum Distance-d Independent Set

Figure: Maximum distance- d independent set for $d=3$

Maximum Distance-d Independent Set

Figure: Maximum distance- d independent set for $d=3$

The GMDdIS Problem on Unit Disk Graphs

Given: A unit disk graph $G=(V, E)$ corresponding to a point set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in the plane.
Objective: A maximum cardinality subset $I \subseteq V$, such that for every pair of vertices $p_{i}, p_{j} \in I$, the length (number of edges) of the shortest path between p_{i} and p_{j} is at least d.

Related Work

Independent set
(1) NP-hard, [Clark et al., 1990].
(2) 5-factor and 3-factor approximation algorithms, [Marathe et al., 1995].
(3) PTAS in time $n^{O\left(k^{2}\right)}$, [Hunt et al., 1998].
(9) First PTAS for MWIS in $n^{O\left(k^{2}\right)}$ time, [Erlebach et al., 2005].
(0) A 2-f.a.a and a PTAS in $O\left(n^{3}\right)$ and $n^{O(k \log k)}$ time resp., [Das et al., 2015].
(0) A 2-f.a.a and a PTAS in $O\left(n^{2} \log n\right)$ and $n^{O(k)}$ time resp., [Jallu and Das, 2016].

The GMDdIS Problem on Unit Disk Graphs

1. we study the MDdIS problem on unit disk graphs and we call it the geometric maximum distance-d independent set (GMDdIS) problem.
2. We show that the decision version of the GMDdIS problem (for $d \geq 3$) is NP-complete on unit disk graphs.
3. We propose a 4-factor approximation algorithm for the problem.
4. We also proposed a PTAS for this problem.

Our work

NP-complete
(1) Geometric Distance-d Independent Set (GDdIS) Problem Instance : An unweighted unit disk graph $G=(V, E)$ defined on a point set P and a positive integer $k \leq|V|$.
Question: Does there exist a distance- d independent set of size at least k in G ?
(2) Distance-d Independent Set On Planar Bipartite Graphs[Eto et al. (2014)]
Instance : An unweighted planar bipartite graph $G=(V, E)$ with girth at least d and maximum vertex degree 3 , and a positive integer $k \leq|V|$.
Question: Does there exist a distance- d independent set of size at least k in G ?

Planar embedding of planar graphs

Key lemma [Valiant, 1981]
Planar graph $G=(V, E)$ with maximum degree 4 can be embedded in the plane using $O\left(|V|^{2}\right)$ area in such a way that its vertices are at integer co-ordinates and its edges are drawn so that they are made up of line segments of the form $x=i$ or $y=j$, for integers i and j.

Observation

Corollary

Let $G=(V, E)$ be a planar graph with maximum degree 3. G can be embedded in the plane such that its vertices are at $(4 i, 4 j)$ and its edges are drawn as a sequences of consecutive line segments drawn on the lines $x=4 i$ or $y=4 j$, for some integers i and j.

NP-hardness proof for DdIS problem

Figure: (a) A planar bipartite graph G of maximum degree 3, (b) its embedding G^{\prime} on a grid of cell size 3×3.

NP-hardness proof for DdIS problem

Figure: (c) adding of extra points to G^{\prime}, (d) the obtained UDG $G^{\prime \prime}$.

NP-hardness proof for DdIS problem

Claim

G has a DdIS of cardinality at least k if and only if $G^{\prime \prime}$ has a DdIS of cardinality at least $k+\ell$.

NP-hardness proof for DdIS problem

Lemma

Any DdIS of $G^{\prime \prime}$ contains at most ℓ points from segments.

NP-hardness proof for DdIS problem

The obtained UDG $G^{\prime \prime}$.

Approximation algorithm for DdIS problem

Figure: The region divided with horigental strips of width d

Approximation algorithm for DdIS problem

Figure: Each strip divided with vertical strips of width d

Approximation algorithm for DdIS problem

Lemma

If OPT is an optimum solution for the given GMDdIS problem, then $\max \left(\left|S_{\text {even }}\right|,\left|S_{\text {odd }}\right|\right) \geq \frac{1}{4}|O P T|$.

Computing an optimum solution in a $d \times d$ square

- Let $\mathcal{Q} \subseteq P$ be the set of points inside a $d \times d$ square χ.
- G_{χ} be the UDG defined on \mathcal{Q}
- Let $C_{1}, C_{2}, \ldots, C_{l}$ be the connected components of G_{χ}.
- Without loss of generality we assume that any two components in G_{χ} are at least d distance apart ${ }^{1}$ in G.

[^0]
Computing an optimum solution in a $d \times d$ square

Lemma

The worst case number of components in G_{χ} is $O\left(d^{2}\right)$.

Computing an optimum solution in a $d \times d$ square

Figure: Maximum number of components in a $d \times d$ square

Computing an optimum solution in a $d \times d$ square

Lemma

Let C be any component of G_{χ}. The number of mutually distance-d independent points in C is bounded by $O(d)$.

Computing an optimum solution in a $d \times d$ square

Figure: Maximum number of mutually distance- d independent set in a $d \times d$ square

Computing an optimum solution in a $d \times d$ square

Figure: Maximum number of mutually distance- d independent set in a $d \times d$ square

Computing an optimum solution in a $d \times d$ square

Figure: Maximum number of mutually distance- d independent set in a $d \times d$ square

Computing an optimum solution in a $d \times d$ square

Lemma

An optimal DdIS in χ can be computed in $d^{2} n^{O(d)}$ time.

Computing an optimum solution in a $d \times d$ square

Theorem

Given a set P of n points in the plane, we can always compute a DdIS of size at least $\frac{1}{4}|O P T|$ in $d^{2} n^{O(d)}$ time, where $|O P T|$ is the cardinality of a GMDdIS.

Approximation scheme for DdIS problem

We use two level shifting strategy

Figure: On $i^{\text {th }}$ iteration first vertical strip is of width i, all the even strip is of widthd and all the odd strips is of width k, where $k \gg d$.

Approximation scheme for DdIS problem

Figure: Each vertical odd strip use the same shifting strategy

Approximation scheme for DdIS problem

Figure: $\mathcal{Q} \subseteq P$ inside a square χ of size $k \times k$.

Approximation scheme for DdIS problem

Figure: partition χ into four sub-squares, each of size $\frac{k}{2} \times \frac{k}{2}$, using a horizontal line ℓ_{h} and a vertical lines ℓ_{v}.

Approximation scheme for DdIS problem

Figure: $\mathcal{Q}_{1} \subseteq \mathcal{Q}$, the subset of points in χ which are at most d distance away from ℓ_{h} and/or ℓ_{v}

Approximation scheme for DdIS problem

Let \mathcal{Q}_{2} be a maximum cardinality subset of \mathcal{Q}_{1} such that all the points in \mathcal{Q}_{2} are pair wise distance- d independent in p.

Lemma

$\left|\mathcal{Q}_{2}\right| \leq O(k)$.

Approximation scheme for DdIS problem

Approximation scheme for DdIS problem

Lemma

The solution produced for the cell χ (of size $k \times k$) in the aforesaid process is optimum, and the time complexity of the proposed algorithm is $k^{2} m^{O(k)}$, where $m=|\mathcal{Q}|$.
$T(m, k)=4 \times T\left(m, \frac{k}{2}\right) \times m^{O(k)}+O\left(k^{2}\right)$, which is $k^{2} \times m^{O(k)}$ in the worst case.

Theorem

Given a set P of n points (centers of the unit disks) in the plane and an integer $k>1$, the proposed scheme produces a DdIS of size at least $\frac{1}{\left(1+\frac{1}{k}\right)^{2}}|O P T|$ in $k^{2} n^{O(k)}$ time, where $|O P T|$ is the cardinality of a GMDdIS.

References I

Clark, B. N., Colbourn, C. J., and Johnson, D. S. (1990).
Unit disk graphs.
Discrete mathematics, 86(1):165-177.
Das, G. K., De, M., Kolay, S., Nandy, S. C., and Sur-Kolay, S. (2015). Approximation algorithms for maximum independent set of a unit disk graph.
Information Processing Letters, 115(3):439-446.
Rerlebach, T., Jansen, K., and Seidel, E. (2005).
Polynomial-time approximation schemes for geometric intersection graphs.
SIAM Journal on Computing, 34(6):1302-1323.

References II

Hunt, H. B., Marathe, M. V., Radhakrishnan, V., Ravi, S. S., Rosenkrantz, D. J., and Stearns, R. E. (1998).
Nc-approximation schemes for np-and pspace-hard problems for geometric graphs.
Journal of Algorithms, 26(2):238-274.
囲 Jallu, R. K. and Das, G. K. (2016).
Improved algorithm for maximum independent set on unit disk graph.
In Algorithms and Discrete Applied Mathematics: Second
International Conference, CALDAM 2016, Trivendrum, India, February 18-20, 2016. Proceedings. Springer.
(Marathe, M. V., Breu, H., Hunt, H. B., Ravi, S. S., and Rosenkrantz, D. J. (1995).

Simple heuristics for unit disk graphs.
Networks, 25(2):59-68.

References III

围 Valiant, L. G. (1981).
Universality considerations in VLSI circuits.
IEEE Transactions on Computers, 100(2):135-140.

THANK YOU

[^0]: ${ }^{1}$ if there are two components having distance less than d in G, then we can view them as a single component

